220
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A horizontal punch on a layered and orthotropic composite system with negative Poisson’s ratio

&
Pages 2101-2110 | Received 08 Oct 2021, Accepted 03 Mar 2022, Published online: 11 Mar 2022

References

  • I.I. Argatov, R. Guinovart-Díaz, and F.J. Sabina, On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint, Int. J. Eng. Sci., vol. 54, pp. 42–57, 2012. DOI: 10.1016/j.ijengsci.2012.01.010.
  • E. Pasternak, and A.V. Dyskin, Architectured Materials with Inclusions Having Negative Poisson's Ratio or Negative Stiffness. In: Y. Estrin, Y. Brechet, J. Dunlop (eds.). Architectured Materials in Nature and Engineering Archimats, Springer Series in Materials Science, Switzerland, 282, pp. 51–87, Springer, 2019.
  • M. Mir, M.N. Ali, J. Sami, and U. Ansari, Review of Mechanics and Applications of Auxetic Structures, Adv. Mater. Sci. Eng., vol. 2014, pp. 1–17, 2014. DOI: 10.1155/2014/753496.
  • K.E. Evans, M.A. Nkansah, I.J. Hutchinson, Molecular network design, Nature, vol. 353, no. 6340, pp. 124–124, 1991. Rogers, and S.C. DOI: 10.1038/353124a0.
  • R. Lakes , Foam structures with a negative Poisson's Ratio, Science, vol. 235, no. 4792, pp. 1038–1040, 1987. DOI: 10.1126/science.235.4792.1038.
  • K.L. Alderson, A.P. Pickles, P.J. Neale, and K.E. Evans, Auxetic polyethylene: the effect of a negative Poisson's ratio on hardness, Acta Metall. Mater., vol. 42, no. 7, pp. 2261–2266, 1994. DOI: 10.1016/0956-7151(94)90304-2.
  • K.E. Evans, and A. Alderson, Auxetic materials: functional materials and structures from lateral thinking, Adv. Mater., vol. 12, no. 9, pp. 617–628, 2000. DOI: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
  • K.E. Evans, and A. Alderson, Auxetic materials: the positive side of being negative, Eng. Sci. Educ. J., vol. 9, no. 4, pp. 148–154, 2000. DOI: 10.1049/esej:20000402.
  • A. Bezazi, and F. Scarpa, Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading, Int. J. Fatigue., vol. 29, no. 5, pp. 922–930, 2007. DOI: 10.1016/j.ijfatigue.2006.07.015.
  • F. Scarpa, L.G. Ciffo, and J.R. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct., vol. 13, no. 1, pp. 49–56, 2004. DOI: 10.1088/0964-1726/13/1/006.
  • N. Chan, and K.E. Evans, Indentation resilience of conventional and auxetic foams, J. Cell. Plast., vol. 34, no. 3, pp. 231–260, 1998. DOI: 10.1177/0021955X9803400304.
  • R.S. Webber, K.L. Alderson, and K.E. Evans, A novel fabrication route for auxetic polyethylene, Part 2: mechanical properties, Polym. Eng. Sci., vol. 48, no. 7, pp. 1351–1358, 2008. DOI: 10.1002/pen.21110.
  • R.S. Lakes, and K. Elms, Indentability of conventional and negative Poisson's ratio foams, J. Compos. Mater., vol. 27, no. 12, pp. 1193–1202, 1993. DOI: 10.1177/002199839302701203.
  • T.C. Lim. Auxetic Materials and Structures, Springer, Singapore Heidelberg New York Dordrecht London, 2015. ISSN 1612–1317
  • Y. Prawoto, Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio, Comput. Mater. Sci., vol. 58, pp. 140–153, 2012. DOI: 10.1016/j.commatsci.2012.02.012.
  • W. Yang, Z.-M. Li, W. Shi, B.-H. Xie, and M.-B. Yang, Review on auxetic materials, J. Mater. Sci., vol. 39, no. 10, pp. 3269–3279, 2004. DOI: 10.1023/B:JMSC.0000026928.93231.e0.
  • C.W. Smith, F. Lehman, R.J. Wootton, and K.E. Evans, Strain dependent densification during indentation in auxetic foams, Cell. Polym., vol. 18, pp. 79–101, 1999.
  • J.B. Choi, and R.S. Lakes, Non-linear properties of polymer cellular materials with a negative Poisson’s ratio, J. Mater. Sci., vol. 27, no. 17, pp. 4678–4684, 1992. DOI: 10.1007/BF01166005.
  • O. Photiou, N. Prastiti, E. Sarris, and G. Constantinides, On the conical indentation response of elastic auxetic materials: effects of Poisson’s ratio, contact friction and cone angle, Int. J. Solids Struct., vol. 81, pp. 33–42, 2016. DOI: 10.1016/j.ijsolstr.2015.10.020.
  • I. Karachevtseva, E. Pasternak, and A.V. Dyskin, Negative stiffness produced by rotation of non-spherical particles and its effect on frictional sliding, Phys. Status Solidi B., vol. 256, no. 1, pp. 1800003, 2019. DOI: 10.1002/pssb.201800003.
  • I. Shufrin, E. Pasternak, and A.V. Dyskin, Effective properties of layered auxetic hybrids, Compos. Struct., vol. 209, pp. 391–400, 2019. DOI: 10.1016/j.compstruct.2018.10.072.
  • Y. Fan, and Y. Wang, The effect of negative Poisson's ratio on the low-velocity impact response of an auxetic nanocomposite laminate beam, Int. J. Mech. Mater. Des., vol. 17, no. 1, pp. 153–169, 2021. DOI: 10.1007/s10999-020-09521-x.
  • Z. Li, B.L. Wang, K.F. Wang, and L. Zheng, Improving thermomechanical properties of cracked brittle honeycombs by negative Poisson’s ratio effect, Compos. Struct., vol. 266, pp. 113825, 2021. DOI: 10.1016/j.compstruct.2021.113825.
  • J.S. Hu, B.L. Wang, J.E. Li, and K.F. Wang, Thermal shock resistance behavior of auxetic ceramic honeycombs with a central crack or an edge crack, Ceram. Int. vol. 46, no. 8, pp. 11835–11845, 2020. DOI: 10.1016/j.ceramint.2020.01.218.
  • J.S. Hu, and B.L. Wang, Crack growth behavior and thermal shock resistance of ceramic sandwich structures with an auxetic honeycomb core, Compos. Struct., vol. 260, pp. 113256, 2021. DOI: 10.1016/j.compstruct.2020.113256.
  • J.S. Hu, and B.L. Wang, Enhanced fatigue performance of auxetic honeycomb/substrate structures under thermal cycling, Int. J. Mech. Sci., vol. 199, pp. 106432, 2021. DOI: 10.1016/j.ijmecsci.2021.106432.
  • L.L. Hu, MZh Zhou, and H. Deng, Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation, Compos. Struct., vol. 207, pp. 323–330, 2019. DOI: 10.1016/j.compstruct.2018.09.066.
  • X.F. Li, T-stress near the tips of a cruciform crack with unequal arms, Eng. Fract. Mech., vol. 73, no. 6, pp. 671–683, 2006. DOI: 10.1016/j.engfracmech.2005.11.002.
  • Y. Qiu, et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions, Nano Energy, vol. 78, pp. 105337, 2020. DOI: 10.1016/j.nanoen.2020.105337.
  • H. Wu, L. Li, G. Chai, F. Song, and T. Kitamura, Three-dimensional thermal weight function method for the interface crack problems in bimaterial structures under a transient thermal loading, J. Thermal Stresses, vol. 39, no. 4, pp. 371–385, 2016. DOI: 10.1080/01495739.2016.1152108.
  • B.L. Wang, J.C. Han, S.Y. Du, H.Y. Zhang, and Y.G. Sun, Electromechanical behaviour of a finite piezoelectric layer under a flat punch, Int. J. Solids Struct., vol. 45, no. 25-26, pp. 6384–6398, 2008. DOI: 10.1016/j.ijsolstr.2008.08.001.
  • B.L. Wang, Y.G. Sun, J.C. Han, and S.Y. Du, An interface electrode between two piezoelectric layers, Mech. Mater., vol. 41, no. 1, pp. 1–11, 2009. DOI: 10.1016/j.mechmat.2008.07.006.
  • B.L. Wang, J.C. Han, and S.Y. Du, Transient fracture of a layered magnetoelectroelastic medium, Mech. Mater., vol. 42, no. 3, pp. 354–364, 2010. DOI: 10.1016/j.mechmat.2009.12.002.
  • J.E. Li, B.L. Wang, and C. Zhang, Thermal and electrical electrode/punch problem of thermoelectric materials, Int. J. Heat Mass Transf., vol. 143, pp. 118504, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118504.
  • S.L. Guo, K.F. Wang, and B.L. Wang, Dual-phase-lagging heat conduction and associated thermal shock fracture of sandwich composite plates, Int. J. Heat Mass Transf., vol. 139, pp. 317–329, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.04.081.
  • B.L. Wang, J.C. Han, and S.Y. Du, Cracks problem for non-homogeneous composite material subjected to dynamic loading, Int. J. Solids Struct., vol. 37, no. 9, pp. 1251–1274, 2000. DOI: 10.1016/S0020-7683(98)00292-3.
  • B.L. Wang, J.C. Han, and S.Y. Du, Electroelastic fracture dynamics for multilayered piezoelectric materials under dynamic anti-plane shearing, Int. J. Solids Struct., vol. 37, no. 38, pp. 5219–5231, 2000. DOI: 10.1016/S0020-7683(99)00218-8.
  • M.F. Kanninen, E.F. Rybicki, and H.F. Brinson, A critical look at current application of fracture mechanics to the failure of fiber-reinforced composites, Composite, vol. 8, no. 1, pp. 17–32, 1977. DOI: 10.1016/0010-4361(77)90023-4.
  • E. Pasternak, and A.V. Dyskin, Materials and structures with macroscopic negative Poisson's ratio, Int. J. Eng. Sci., vol. 52, pp. 103–114, 2012. DOI: 10.1016/j.ijengsci.2011.11.006.
  • J.E. Li, and B.L. Wang, Effect of negative Poisson’s ratio on the fracture mechanics parameters due to mechanical and thermal loads, Int. J. Eng. Sci., vol. 150, pp. 103256, 2020. DOI: 10.1016/j.ijengsci.2020.103256.
  • Z. Li, K.F. Wang, and B.L. Wang, Indentation resistance of brittle auxetic structures: Combining discrete representation and continuum model, Eng. Fract. Mech., vol. 252, pp. 107824, 2021. DOI: 10.1016/j.engfracmech.2021.107824.
  • Z. Li, B.L. Wang, and K.F. Wang, Mechanism of crack initiation and propagation of re-entrant auxetic honeycombs under thermal shock, J. Appl. Mech., vol. 88, no. 11, pp. 111008, 2021. DOI: 10.1115/1.4051592.
  • K.L. Johnson. Contact Mechanics. Cambridge University Press, United Kingdom, 1985.
  • M. Shi, H. Wu, L. Li, and G. Chai, Calculation of stress intensity factors for functionally graded materials by using the weight functions derived by the virtual crack extension technique, Int. J. Mech. Mater. Des., vol. 10, no. 1, pp. 65–77, 2014. DOI: 10.1007/s10999-013-9231-0.
  • Y. Qiu, H. Wu, J. Wang, J. Lou, Z. Zhang, A. Liu, and G. Chai, The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: A role of flexoelectric effect, J. Appl. Phys., vol. 123, no. 8, pp. 084103, 2018. DOI: 10.1063/1.5019446.
  • H. Wu, X. Ma, Z. Zhang, J. Zhu, J. Wang, and G. Chai, Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain, J. Applied Physics., vol. 119, no. 15, pp. 154102, 2016. DOI: 10.1063/1.4947052.
  • Z.X. Wu, B.L. Wang, S.H. Hou, and L. Zheng, Degeneration of power output of a flexible and wearable thermoelectric module under bending fatigue, Mech. Mater., vol. 161, pp. 104027, 2021. DOI: 10.1016/j.mechmat.2021.104027.
  • Y. Qiu, C. Wang, X. Lu, H. Wu, X. Ma, J. Hu, H. Qi, Y. Tian, Z. Zhang, G. Bao, H. Chai, J. Song, and A. Liu, A biomimetic drosera capensis with adaptive decision-predation behavior based on multifunctional sensing and fast actuating capability, Adv. Funct. Mater., pp. 2110296, 2021. DOI: 10.1002/adfm.202110296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.