251
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode

ORCID Icon, , & ORCID Icon
Pages 2111-2120 | Received 23 Dec 2021, Accepted 04 Mar 2022, Published online: 07 Apr 2022

References

  • X. Song, S. Tan, E. Wang, S. Wu, and Z. Wu, Active shape control of an antenna reflector using piezoelectric actuators, J. Intell. Mater. Syst. Struct., vol. 30, no. 18–19, pp. 2733–2747, 2019. DOI: 10.1177/1045389X19873422.
  • Y. Ichii, H. Okada, H. Nakamori, A. Ueda, H. Yamaguchi, S. Matsuyama, and K. Yamauchi, Development of a glue-free bimorph mirror for use in vacuum chambers, Rev. Sci. Instrum., vol. 90, no. 2, pp. 1–5, 2019.
  • J.P. Sutter, P. Chater, D.S. Keeble, M. Hillman, M.G. Tucker, S.G. Alcock, I.T. Nistea, and H. Wilhelm, 1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays, Opt. Express., vol. 27, no. 11, pp. 16121–16142, 2019. DOI: 10.1364/OE.27.016121.
  • E.F. Crawley, and E.H. Anderson, Detailed models of piezoceramic actuation of beams, J. Intell. Mater. Syst. Struct., vol. 1, no. 1, pp. 4–25, 1990. DOI: 10.1177/1045389X9000100102.
  • D.A. Saravanos, and P.R. Heyliger, Coupled layerwise analysis of composite beams with embedded piezoelectric sensors and actuators, J. Intell. Mater. Syst. Struct., vol. 6, no. 3, pp. 350–363, 1995. DOI: 10.1177/1045389X9500600306.
  • Q.M. Wang, and L.E. Cross, Performance analysis of piezoelectric cantilever bending actuators, Ferroelectrics, vol. 215, no. 1, pp. 187–213, 1998. DOI: 10.1080/00150199808229562.
  • R. Chandra, and I. Chopra, Structural modeling of composite beams with induced-strain actuators, AIAA J., vol. 31, no. 9, pp. 1692–1701, 1993. DOI: 10.2514/3.11832.
  • Sumit, R.Shukla, and A.K. Sinha, Shape control of piezoelectric bimorph by piezo response function and global optimization algorithms: a comparative study, Smart Mater. Struct., vol. 29, no. 11, pp. 115032, 2020. DOI: 10.1088/1361-665X/abb06f.
  • B.N. Agrawal, and M.A. Elshafei, Shape control of composite material plates using piezoelectric actuators, Smart Mater. Struct. Integr. Syst., 1997. vol. 3241, pp. 300–311. DOI: 10.1117/12.293510.
  • V.K. Gupta, P. Seshu, and K.K. Issac, Finite element and experimental investigation of piezoelectric actuated smart shells, AIAA J., vol. 42, no. 10, pp. 2112–2123, 2004. DOI: 10.2514/1.2902.
  • Sumit, R.Shukla, and A.K. Sinha, Finite element method coupled with TLBO for shape control optimization of piezoelectric bimorph in COMSOL Multiphysics, Simulation, vol. 97, no. 9, pp. 635–644, 2021. DOI: 10.1177/00375497211025640.
  • ANSI/IEEE, IEEE Standard on Piezoelectricity, ANSI/IEEE Std. pp. 176–1987, 1988. DOI: 10.1109/IEEESTD.1988.79638
  • Q.M. Wang, Q. Zhang, B. Xu, R. Liu, and L.E. Cross, Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields, J. Appl. Phys., vol. 86, no. 6, pp. 3352–3360, 1999. DOI: 10.1063/1.371213.
  • V.D. Kugel, and L.E. Cross, Behavior of soft piezoelectric ceramics under high sinusoidal electric fields, J. Appl. Phys., vol. 84, no. 5, pp. 2815–2830, 1998. DOI: 10.1063/1.368422.
  • A.J. Masys, W. Ren, G. Yang, and B.K. Mukherjee, Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias, J. Appl. Phys., vol. 94, no. 2, pp. 1155–1162, 2003. DOI: 10.1063/1.1587008.
  • V. Mueller, E. Fuchs, and H. Beige, Characterization of nonlinear properties of soft PZT-piezoceramics, Ferroelectrics, vol. 240, no. 1, pp. 1333–1340, 2000. DOI: 10.1080/00150190008227954.
  • Q.M. Zhang, H. Wang, and J. Zhao, Effect of driving field and temperature on the response behavior of ferroelectric actuator and sensor materials, J. Intell. Mater. Syst. Struct., vol. 6, no. 1, pp. 84–93, 1995. DOI: 10.1177/1045389X9500600111.
  • S. Priya, D. Viehland, A.V. Carazo, J. Ryu, and K. Uchino, High-power resonant measurements of piezoelectric materials: importance of elastic nonlinearities, J. Appl. Phys., vol. 90, no. 3, pp. 1469–1479, 2001. DOI: 10.1063/1.1381046.
  • B.P. Bruno, A.R. Fahmy, M. Stürmer, U. Wallrabe, and M.C. Wapler, Properties of piezoceramic materials in high electric field actuator applications, Smart Mater. Struct., vol. 28, no. 1, pp. 015029, 2019. DOI: 10.1088/1361-665X/aae8fb.
  • Q.M. Wang, T. Zhang, Q. Chen, and X.H. Du, Effect of DC bias field on the complex materials coefficients of piezoelectric resonators, Sens. Actuat. A Phys., vol. 109, no. 1–2, pp. 149–155, 2003. DOI: 10.1016/j.sna.2003.08.008.
  • M. Wischke, D. Haller, F. Goldschmidtboeing, and P. Woias, Assessing the elastostriction and the electrostriction parameter of bulk PZT ceramics, Smart Mater. Struct., vol. 19, no. 8, pp. 085003, 2010. DOI: 10.1088/0964-1726/19/8/085003.
  • M. Wischke, N. Dieterich, D. Haller, M. Kroener, and P. Woias, Elastostriction and electrostriction in piezoelectric transducers comprising bulk PZT ceramics, ECS Trans., vol. 35, no. 30, pp. 139–144, 2011. DOI: 10.1149/1.3653932.
  • H.F. Tiersten, Electroelastic equations for electroded thin plates subject to large driving voltages, J. Appl. Phys., vol. 74, no. 5, pp. 3389–3393, 1993. DOI: 10.1063/1.354565.
  • N. Chattaraj, and R. Ganguli, Effect of self-induced electric displacement field on the response of a piezo-bimorph actuator at high electric field, Int. J. Mech. Sci., vol. 120, pp. 341–348, 2017. DOI: 10.1016/j.ijmecsci.2016.11.012.
  • N. Chattaraj, and R. Ganguli, Electromechanical analysis of tapered piezoelectric bimorph at high electric field, Behav. Mech. Multifunct. Mater. Compos. 2015. vol. 9432, p. 94320E.
  • N. Chattaraj, and R. Ganguli, Electromechanical analysis of piezoelectric bimorph actuator in static state considering the nonlinearity at high electric field, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 802–810, 2016. DOI: 10.1080/15376494.2015.1029168.
  • S.P. Joshi, Non-linear constitutive relations for piezoceramic materials, Smart Mater. Struct., vol. 1, no. 1, pp. 80–83, 1992. DOI: 10.1088/0964-1726/1/1/012.
  • M. Arafa, and A. Baz, On the nonlinear behavior of piezoelectric actuators, JVC/J. Vib. Control., vol. 10, no. 3, pp. 387–398, 2004. DOI: 10.1177/1077546304033365.
  • L.Q. Yao, J.G. Zhang, L. Lu, and M.O. Lai, Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field, Sens. Actuat. A Phys., vol. 115, no. 1, pp. 168–175, 2004. DOI: 10.1016/j.sna.2004.04.037.
  • E. Carrera, F.A. Fazzolari, and M. Cinefra, Fundamental of mechanics of beams, plates and shells. Thermal Stress Analysis of Beams, Plates and Shells, pp. 91–116. Academic Press, Cambridge, MA, 2017.
  • B.N. Agrawal, and K.E. Treanor, Shape control of a beam using piezoelectric actuators, Smart Mater. Struct., vol. 8, no. 6, pp. 729–740, 1999. DOI: 10.1088/0964-1726/8/6/303.
  • S. Yang, and B. Ngoi, Shape control of beams by piezoelectric actuators, AIAA J., vol. 38, no. 12, pp. 2292–2298, 2000. DOI: 10.2514/2.898.
  • Available from https://www.americanpiezo.com/apc-materials/physical-piezoelectric-properties.html. [accessed 2022 January 02].
  • Available from https://www.mgchemicals.com/products/adhesives/electrically-conductive-adhesives/silver-conductive-epoxy/. [accessed 2021 July 22].
  • Available from https://www.micro-epsilon.in/displacement-position-sensors/confocal-sensor/. [accessed 2021 July 22].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.