302
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and theorical investigation on energy dissipation capacity of the viscoelastic limb-like-structure devices

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 2121-2134 | Received 04 Jan 2022, Accepted 05 Mar 2022, Published online: 22 Mar 2022

References

  • JuanPablo. Amezquita-Sanchez, et al., Vibration control on smart civil structures: a review, Mech. Advan. Mater. Struct., vol. 21, no. 1, pp. 23–38, 2014. DOI: 10.1080/15376494.2012.677103.
  • Yao-Rong. Dong, et al., Seismic behavior and damage evolution for retrofitted RC frames using haunch viscoelastic damping braces, Engng. Struct., vol. 199, pp. 109583, 2019. DOI: 10.1016/j.engstruct.2019.109583.
  • Shahin. Mohammadrezazadeh, and Ali. Asghar Jafari, Vibration control of laminated truncated conical shell via magnetostrictive layers, Mech. Advan. Mater. Struct., vol. 27, no. 20, pp. 1756–1764, 2020. DOI: 10.1080/15376494.2018.1525627.
  • Xiao. Yan, Zhao-Dong. Xu, and Qing-Xuan. Shi, Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper, J. Vibration Control., vol. 26, no. 21-22, pp. 2037–2049, 2020. DOI: 10.1177/1077546320910003.
  • Y. Sui, Z. He, J. Xue, et al., Experimental study and numerical analysis on seismic performance of steel beam‐column damping joint in Chinese traditional style buildings, Struct Design Tall Spec Build., vol. 29, no. 5, pp. e1710, 2020. DOI: 10.1002/tal.1710.
  • Z. D. Xu, X. H. Huang, Y. F. Guo, et al., Study of the properties of a multi-dimensional earthquake isolation device for reticulated structures, J. Construct. Steel Res., vol. 88, pp. 63–78, 2013. DOI: 10.1016/j.jcsr.2013.05.002.
  • CornelisAM. Verbaan, GerritWM. Peters, and Maarten. Steinbuch, The advantage of linear viscoelastic material behavior in passive damper design-with application in broad-banded resonance dampers for industrial high-precision motion stages, J. Sound Vibration., vol. 386, pp. 242–250, 2017. DOI: 10.1016/j.jsv.2016.05.031.
  • H. Li, Z. Xu, D. Gomez, et al., A modified fractional-order derivative zener model for rubber-like devices for structural control, J. Eng. Mech., vol. 148, no. 1, pp. 04021119, 2022. DOI: 10.1061/(ASCE)EM.1943-7889.0002027.
  • S. Mirzabagheri, et al., Experimental and numerical investigation of rotational friction dampers with multi units in steel frames subjected to lateral excitation, Archiv. Civil Mech. Engng., vol. 15, no. 2, pp. 479–491, 2015. DOI: 10.1016/j.acme.2014.05.009.
  • Sujit. Jaisee, Feng. Yue, and YiHao. Ooi, A state-of-the-art review on passive friction dampers and their applications, Engng. Struct., vol. 235, pp. 112022, 2021. DOI: 10.1016/j.engstruct.2021.112022.
  • Wei. He, et al., Dynamical modeling and boundary vibration control of a rigid-flexible wing system, IEEE/ASME Trans. Mechatron., vol. 25, no. 6, pp. 2711–2721, 2020. DOI: 10.1109/TMECH.2020.2987963.
  • Deyi. Zhou, et al., Resistance and Consumption Reduction Mechanism of Bionic Vibration and Verification of Field Subsoiling Experiment, Appl. Sci., vol. 11, no. 21, pp. 10480, 2021. DOI: 10.3390/app112110480.
  • H. Dai, X. Jing, Y. Wang, et al., Post-capture vibration suppression of spacecraft via a bio-inspired isolation system, Mech. Syst. Sig. Process., vol. 105, pp. 214–240, 2018. DOI: 10.1016/j.ymssp.2017.12.015.
  • Ge. Yan, et al., Bio-inspired polygonal skeleton structure for vibration isolation: design, modelling, and experiment, Sci. China Technol. Sci., vol. 63, no. 12, pp. 2617–2630, 2020. DOI: 10.1007/s11431-020-1568-8.
  • Sheng. Xu, Ming. Chu, and Hanxu. Sun, Design and stiffness optimization of bionic docking mechanism for space target acquisition, Appl. Sci., vol. 11, no. 21, pp. 10278, 2021. DOI: 10.3390/app112110278.
  • Guoqing. Jiang, Xingjian. Jing, and Yingqing. Guo, A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties, Mech. Syst. Sig. Process., vol. 138, pp. 106552, 2020. DOI: 10.1016/j.ymssp.2019.106552.
  • Mei. De-Qing, Yang. Ke-Ji, and Chen. Zi-Chen, Design of an ultra-precision vibration isolation system by imitating the special organic texture of woodpecker's brain, IEEE Conference on Robotics, Automation and Mechatronics. Vol. 1. IEEE, 2004.
  • R. Zeng, G. Wen, J. Zhou, et al., Limb-inspired bionic quasi-zero stiffness vibration isolator, Acta Mechanica Sinica., vol. 37, no. 7, pp. 1152–1167, 2021.
  • Z. Wu, X. Jing, B. Sun, et al., A 6DOF passive vibration isolator using X-shape supporting structures, J. Sound Vibration., vol. 380, pp. 90–111, 2016. DOI: 10.1016/j.jsv.2016.06.004.
  • Yeshou. Xu, et al., Mathematical modeling and test verification of viscoelastic materials considering microstructures and ambient temperature influence, Mechan. Advan. Mater. Struct., pp. 1–12, 2021. DOI: 10.1080/15376494.2021.1992689.
  • Y. R. Dong, Z. D. Xu, Q. Q. Li, et al., Design parameters and material‐scale damage evolution of seismic upgraded RC frames by viscoelastic haunch bracing‐dampers, Earthquake Engng. Struct. Dyn., vol. 50, no. 5, pp. 1476–1491, 2021. DOI: 10.1002/eqe.3406.
  • Z. H. He, Z. D. Xu, J. Y. Xue, et al., Theoretical and experimental research of viscoelastic damping limb-like-structure device with coupling nonlinear characteristics, Intern. J. Struct. Stcapacity Dyn., vol. 21, no. 12, pp. 2130002, 2021.
  • K. Shaska, R. A. Ibrahim, and R. F. Gibson, Influence of excitation displacement on the characteristics of nonlinear butyl rubber isolators, Nonlin. Dyn., vol. 47, no. 1–3, pp. 83–104, 2006. DOI: 10.1007/s11071-006-9060-x.
  • Q. Q. Li, Z. D. Xu, Y. R. Dong, et al., The equivalent Havriliak–Negami model for characterizing the dynamic properties of viscoelastic dampers, J. Mech. Mater. Struct., vol. 16, no. 4, pp. 471–486, 2021. DOI: 10.2140/jomms.2021.16.471.
  • Kuei-Chung. Chang, et al., Effect of ambient temperature on viscoelastically damped structure, J. Struct. Engng., vol. 118, no. 7, pp. 1955–1973, 1992. DOI: 10.1061/(ASCE)0733-9445(1992)118:7(1955).
  • Y. Zhong, J. Tu, Y. Yu, et al., Temperature compensation in viscoelastic damper using magnetorheological effect, J. Sound Vibration., vol. 398, pp. 39–51, 2017. DOI: 10.1016/j.jsv.2016.11.004.
  • Chunwei. Zhang, Amir. Ali, and Li. Sun, Investigation on low-cost friction-based isolation systems for masonry building structures: experimental and numerical studies, Engng. Struct., vol. 243, pp. 112645, 2021. DOI: 10.1016/j.engstruct.2021.112645.
  • N. Mostaghel, and M. Khodaverdian, Dynamics of resilient‐friction base isolator (R‐FBI, Earthquake Engng. Struct. Dyn., vol. 15, no. 3, pp. 379–390, 1987. DOI: 10.1002/eqe.4290150307.
  • Marek. Stembalski, et al., Testing the vibration damping of a glass gatherer robot arm using a friction damper, Archiv. Civil Mechan. Engng., vol. 17, no. 2, pp. 240–248, 2017. DOI: 10.1016/j.acme.2016.10.004.
  • J. Xue, C. Wu, X. Zhang, et al., Experimental and numerical study of mortise-tenon joints reinforced with innovative friction damper, Engng. Struct., vol. 230, pp. 111701, 2021. DOI: 10.1016/j.engstruct.2020.111701.
  • O. M. Braun, and Michel. Peyrard, Dependence of kinetic friction on velocity: master equation approach, Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 83, no. 4 Pt 2, pp. 046129, 2011. DOI: 10.1103/PhysRevE.83.046129.
  • Vittorio. Nicolosi, Mauro. D'Apuzzo, and Azzurra. Evangelisti, Cumulated frictional dissipated energy and pavement skid deterioration: evaluation and correlation, Construct. Building Mater., vol. 263, pp. 120020, 2020. DOI: 10.1016/j.conbuildmat.2020.120020.
  • T. Ge, Z. D. Xu, Y. Q. Guo, X. H. Huang, and Z. F. He, Experimental investigation and multiscale modeling of ve damper considering chain network and ambient temperature influence, J. Eng. Mech., vol. 148, no. 1, pp. 04021124, 2022. DOI: 10.1061/(ASCE)EM.1943-7889.0002012.
  • Jing. Bian, and Xingjian. Jing, Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure, Mechan. Syst. Sig. Process., vol. 125, pp. 21–51, 2019. DOI: 10.1016/j.ymssp.2018.02.014.
  • T. Ge, Z. D. Xu, and F. G. Yuan, Predictive model of dynamic mechanical properties of VE damper based on acrylic rubber–graphene oxide composites considering aging damage, J. Aerosp. Eng., vol. 35, no. 2, pp. 04021132, 2022. DOI: 10.1061/(ASCE)AS.1943-5525.0001385.
  • Jerzy. Wojewoda, et al., Hysteretic effects of dry friction: modelling and experimental studies, Philos. Trans. A Math. Phys. Eng. Sci., vol. 366, no. 1866, pp. 747–765, 2008. DOI: 10.1098/rsta.2007.2125.
  • J. H. Wang, and W. L. Shieh, The influence of a variable friction coefficient on the dynamic behavior of a blade with a friction damper, J. Sound Vibration., vol. 149, no. 1, pp. 137–145, 1991. DOI: 10.1016/0022-460X(91)90916-8.
  • Q. Q. Li, Z. D. Xu, Y. R. Dong, et al., Effects of mechanical nonlinearity of viscoelastic dampers on the seismic performance of viscoelasticlly damped structures, Soil Dyn. Earthquake Enging., vol. 150, pp. 106936, 2021. DOI: 10.1016/j.soildyn.2021.106936..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.