426
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thermo-mechanical performance of 3D-printed TC4 hierarchical lattice-truss-core sandwich structures in high temperature conditions

, , , &
Pages 3280-3292 | Received 05 Jan 2022, Accepted 29 Apr 2022, Published online: 11 May 2022

References

  • Z. H. Dong, Y. H. Li, M. L. Lv, and R. W. Zuo, Adaptive accurate tracking control of HFVs in the presence of dead-zone and hysteresis input nonlinearities, Chin. J. Aeronaut., vol. 34, no. 5, pp. 642–651, 2021. DOI: 10.1016/j.cja.2020.10.028.
  • F. Qu, J. J. Chen, D. Sun, J. Q. Bai, and G. Zuo, A grid strategy for predicting the space plane's hypersonic aerodynamic heating loads, Aerosp. Sci. Technol., vol. 86, pp. 659–670, 2019. DOI: 10.1016/j.ast.2019.01.049.
  • C. Y. Bao, P. Wang, and G. J. Tang, Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase, Chin. J. Aeronaut., vol. 34, no. 5, pp. 535–553, 2021. DOI: 10.1016/j.cja.2020.11.009.
  • Y. H. Zhu, W. Peng, R. N. Xu, and P. X. Jiang, Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles, Chin. J. Aeronaut., vol. 31, no. 10, pp. 1929–1953, 2018. DOI: 10.1016/j.cja.2018.06.011.
  • J. J. Gou, Z. W. Yan, J. X. Hu, G. Gao, and C. L. Gong, The heat dissipation, transport and reuse management for hypersonic vehicles based on regenerative cooling and thermoelectric conversion, Aerosp. Sci. Technol., vol. 108, pp. 106373, 2021. DOI: 10.1016/j.ast.2020.106373.
  • D. Xie, B. Dong, and X. J. Jing, Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel, Aerosp. Sci. Technol., vol. 106, pp. 106170, 2020. DOI: 10.1016/j.ast.2020.106170.
  • A. A. Pasha and K. A. Juhany, Numerical simulation of compression corner flows at Mach number 9, Chin. J. Aeronaut., vol. 33, no. 6, pp. 1611–1624, 2020. DOI: 10.1016/j.cja.2020.01.005.
  • S. Bapanapalli, O. Martinez, C. Gogu, B. Sankar, R. Haftka, and M. Blosser, (Student Paper) Analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, USA, 2006. DOI: 10.2514/6.2006-1942.
  • A. Sharma, C. Gogu, O. Martinez, B. Sankar, and R. Haftka, Multi-fidelity design of an integrated thermal protection system for spacecraft reentry, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, Schaumburg, IL, USA, 2008. DOI: 10.2514/6.2008-2062.
  • O. Martinez, B. Sankar, R. Haftka, and M. L. Blosser, Two-dimensional orthotropic plate analysis for an integral thermal protection system, Aiaa J., vol. 50, no. 2, pp. 387–398, 2012. DOI: 10.2514/1.J051172.
  • Y. Li, L. Zhang, R. He, Y. Ma, K. Zhang, X. Bai, B. Xu, and Y. Chen, Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure, Aerosp. Sci. Technol., vol. 91, pp. 607–616, 2019. DOI: 10.1016/j.ast.2019.05.048.
  • Y. Shi, P. K. Dileep, B. Heidenreich, and D. Koch, Determination and modeling of bending properties for continuous fiber reinforced C/C-SiC sandwich structure with grid core, Compos. Struct., vol. 204, pp. 198–206, 2018. DOI: 10.1016/j.compstruct.2018.07.086.
  • Y. F. Chen, L. Zhang, C. W. He, R. J. He, B. S. Xu, and Y. Li, Thermal insulation performance and heat transfer mechanism of C/SiC corrugated lattice core sandwich panel, Aerosp. Sci. Technol., vol. 111, pp. 106539, 2021. DOI: 10.1016/j.ast.2021.106539.
  • C. L. Gong, Y. F. Wang, L. X. Gu, and S. B. Shi, An approach for stress analysis of corrugated-core integrated thermal protection system under thermal and mechanical environment, Compos. Struct., vol. 185, pp. 1–26, 2018. DOI: 10.1016/j.compstruct.2017.10.078.
  • L. Shuang, and Z. Boming, Effects of active cooling on the metal thermal protection systems, Aerosp. Sci. Technol., vol. 15, no. 7, pp. 526–533, 2011. DOI: 10.1016/j.ast.2010.08.001.
  • C. J. Ho, J. Y. Yen, X. Y. Kung, T. S. Yang, and C. D. Wen, Enhancing convective heat transfer for laminar flow in a tube by inserting a concentric inner tube and controlling concurrent flows: a numerical assessment, Int. Commun. Heat Mass., vol. 99, pp. 26–36, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.10.004.
  • X. Jin, B. B. Shen, H. B. Yan, B. Sunden, and G. N. Xie, Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and pyramidal-lattice cores, Int. J. Heat Mass Transf., vol. 127, pp. 268–282, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.087.
  • G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, and P. Tran, Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs, Compos. Struct., vol. 183, pp. 242–261, 2018. DOI: 10.1016/j.compstruct.2017.03.018.
  • G. Imbalzano, P. Tran, T. D. Ngo, and P. V. S. Lee, Three-dimensional modelling of auxetic sandwich panels for localised impact resistance, J. Sandwich Struct. Mater., vol. 19, no. 3, pp. 291–316, 2017. DOI: 10.1177/1099636215618539.
  • G. M. Yang, C. Hou, M. Y. Zhao, and W. Mao, Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels, Sci. Rep. UK, vol. 9, pp. 31–68, 2019. DOI: 10.1038/s41598-019-39704-2.
  • C. Hou, G. M. Yang, X. P. Wan, and J. Chen, Study of thermo-fluidic characteristics for geometric-anisotropy Kagome truss-cored lattice, Chin. J. Aeronaut., vol. 32, no. 7, pp. 1635–1645, 2019. DOI: 10.1016/j.cja.2019.03.023.
  • T. A. Schaedler, A. J. Jacobsena, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit, and W. B. Carter, Ultralight metallic microlattices, Science, vol. 334, no. 6058, pp. 962–965, 2011. DOI: 10.1126/science.1211649.
  • S. M. Pingle, N. A. Fleck, V. S. Deshpande, and H. N. G. Wadley, Collapse mechanism maps for a hollow pyramidal lattice, P. Roy Soc. A Math. Phys., vol. 467, no. 2128, pp. 985–1011, 2011. DOI: 10.1098/rspa.2010.0329.
  • G. Qi, B. Ji, and L. Ma, Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing, Mech, Adv. Mater. Struct., vol. 26, no. 15, pp. 1298–1306, 2019. DOI: 10.1080/15376494.2018.1432805.
  • G. Qi, and L. Ma, Experimental investigation of composite pyramidal truss core sandwich panels with lightweight inserts, Compos. Struct., vol. 187, pp. 336–343, 2018. DOI: 10.1016/j.compstruct.2017.12.071.
  • G. Qi, Y. L. Chen, P. Rauschen, K. U. Schroder, and L. Ma, Characteristics of an improved boundary insert for sandwich panels with lattice truss cores, Aerosp. Sci. Technol., vol. 107, pp. 106278, 2020. DOI: 10.1016/j.ast.2020.106278.
  • Q. Q. Wu, L. Ma, L. Z. Wu, and J. Xiong, A novel strengthening method for carbon fiber composite lattice truss structures, Compos. Struct., vol. 153, pp. 585–592, 2016. DOI: 10.1016/j.compstruct.2016.06.060.
  • X. D. Li, L. Z. Wu, L. Ma, and X. Q. Yan, Compression and shear response of carbon fiber composite sandwich panels with pyramidal truss cores after thermal exposure, Mech. Adv. Mater. Struct., vol. 26, no. 10, pp. 866–877, 2019. DOI: 10.1080/15376494.2018.1430269.
  • X. D. Li, J. Xiong, L. Ma, L. Z. Wu, and X. Q. Yan, Effect of vacuum thermal cycling on the compression and shear performance of composite sandwich structures containing pyramidal truss cores, Compos. Sci. Technol., vol. 158, pp. 67–78, 2018. DOI: 10.1016/j.compscitech.2018.01.042.
  • R. Lakes, Materials with structural hierarchy, Nature, vol. 361, no. 6412, pp. 511–515, 1993. DOI: 10.1038/361511a0.
  • G. W. Kooistra, V. Deshpande, and H. N. G. Wadley, Hierarchical corrugated core sandwich panel concepts, J. Appl. Mech. T ASME, vol. 74, no. 2, pp. 259–268, 2007. DOI: 10.1115/1.2198243.
  • H. L. Tan, Z. C. He, E. Li, X. W. Tan, A. G. Cheng, and Q. Q. Li, Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores, Aerosp. Sci. Technol., vol. 106, pp. 106073, 2020. DOI: 10.1016/j.ast.2020.106073.
  • Q. Q. Wu, A. Vaziri, M. Eydani, R. Ghosh, G. Ying, W. Xingyu, L. Ma, J. Xiong, and L. Wu, Lattice materials with pyramidal hierarchy: Systematic analysis and three dimensional failure mechanism maps, J. Mech. Phys. Solids, vol. 125, pp. 112–144, 2019. DOI: 10.1016/j.jmps.2018.12.006.
  • Q. Q. Wu, Y. Gao, X. Wei, D. Mousanezhad, L. Ma, A. Vaziri, and J. Xiong, Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores, Int. J. Solids Struct., vol. 132–133, pp. 171–187, 2018. DOI: 10.1016/j.ijsolstr.2017.09.024.
  • S. Yin, L. Z. Wu, and S. R. Nutt, Compressive efficiency of stretch-stretch-hybrid hierarchical composite lattice cores, Mater. Des., vol. 56, pp. 731–739, 2014. DOI: 10.1016/j.matdes.2013.11.012.
  • J. Xu, Y. B. Wu, X. Gao, H. P. Wu, S. Nutt, and S. Yin, Design of composite lattice materials combined with fabrication approaches, J. Compos. Mater., vol. 53, no. 3, pp. 393–404, 2019. DOI: 10.1177/0021998318785710.
  • S. Yin, L. Z. Wu, and S. Nutt, Stretch-bend-hybrid hierarchical composite pyramidal lattice cores, Compos. Struct., vol. 98, pp. 153–159, 2013. DOI: 10.1016/j.compstruct.2012.11.004.
  • C. X. Peng, K. Fox, M. Qian, H. Nguyen-Xuan, and P. Tran, 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling, Thin Wall Struct., vol. 161, pp. 107471, 2021. DOI: 10.1016/j.tws.2021.107471.
  • Z. Zhang, H. S. Lei, M. C. Xu, J. Hua, C. L. Li, and D. N. Fang, Out-of-plane compressive performance and energy absorption of multi-layer graded sinusoidal corrugated sandwich panels, Mater. Des., vol. 178, 2019. DOI: 10.1016/j.matdes.2019.107858.
  • X. Ren, J. H. Shen, P. Tranc, T. D. Ngo, and Y. M. Xie, Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial, Mater Des., vol. 139, pp. 336–342, 2018. DOI: 10.1016/j.matdes.2017.11.025.
  • Z. Y. Zhao, B. Han, X. Wang, Q. C. Zhang, and T. J. Lu, Out-of-plane compression of Ti-6Al-4V sandwich panels with corrugated channel cores, Mater. Des., vol. 137, pp. 463–472, 2018. DOI: 10.1016/j.matdes.2017.10.055.
  • L. Ma, Ye. Ma, and Q. J. J. Qin, Stability analysis of different stiffened plates in thermal-mechanical coupling environments, J. Northwestern Polytechnic Univ., vol. 38, no. 1, pp. 40–47, 2020. DOI: 10.1051/jnwpu/20203810040.
  • M. Sima, and T. Ozel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tool Manu., vol. 50, no. 11, pp. 943–960, 2010. DOI: 10.1016/j.ijmachtools.2010.08.004.
  • “China Aviation Materials Handbook” Editorial Committee. China Aviation Materials Handbook. Vol. IV: Titanium Alloys and Copper Alloys, China Quality and Standard Press, Beijing, China, pp. 104–131, 2001.
  • B. Lozanovski, M. Leary, J. Phuong Tran, D. P. Shidid, M. Qian, P. Choong, and M. Brandt, Computational modelling of strut defects in SLM manufactured lattice structures, Mater. Des., vol. 171, pp. 107671, 2019. DOI: 10.1016/j.matdes.2019.107671.
  • P. Tran, and C. X. Peng, Triply periodic minimal surfaces sandwich structures subjected to shock impact, J. Sandwich Struct. Mater., vol. 23, no. 6, pp. 2146–2175, 2021. DOI: 10.1177/1099636220905551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.