485
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of transverse mechanical performance of UD CFRP composite lamina considering high-temperature properties of epoxy

, , , , &
Pages 3351-3364 | Received 21 Dec 2021, Accepted 01 May 2022, Published online: 11 May 2022

References

  • M. Hinton, A. Kaddour, and P. Soden, A further assessment of the predictive capabilities of current failure theories for composite laminates: Comparison with experimental evidence, Compos. Sci. Technol., vol. 64, no. 3-4, pp. 549–588, 2004. DOI: 10.1016/S0266-3538(03)00227-6.
  • P. Soden, M. Hinton, and A. Kaddour, Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates, Compos. Sci. Technol., vol. 58, no. 7, pp. 1011–1022, 1998. DOI: 10.1016/S0266-3538(98)00078-5.
  • P. Soden, M. Hinton, and A. Kaddour, Biaxial test results for strength and deformation of a range of e-glass and carbon fibre reinforced composite laminates: Failure exercise benchmark data, Compos. Sci. Technol., vol. 62, no. 12-13, pp. 1489–1514, 2002. DOI: 10.1016/S0266-3538(02)00093-3.
  • L. Hart-Smith, Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates, Compos. Sci. Technol., vol. 58, no. 7, pp. 1151–1178, 1998. DOI: 10.1016/S0266-3538(97)00192-9.
  • R. M. Christensen, Tensor transformations and failure criteria for the analysis of fiber composite materials, J. Compos. Mater., vol. 22, no. 9, pp. 874–897, 1988. DOI: 10.1177/002199838802200906.
  • Z. Hashin, Failure criteria for unidirectional fiber composites, J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • R. Christensen, Stress based yield/failure criteria for fiber composites, Int. J. Solids Struct., vol. 34, no. 5, pp. 529–543, 1997. DOI: 10.1016/S0020-7683(96)00038-8.
  • C. Sun, and J. Tao, Prediction of failure envelopes and stress/strain behaviour of composite laminates, Compos. Sci. Technol., vol. 58, no. 7, pp. 1125–1136, 1998. DOI: 10.1016/S0266-3538(97)00013-4.
  • S. W. Tsai, and E. M. Wu, A general theory of strength for anisotropic materials, J. Compos. Mater., vol. 5, no. 1, pp. 58–80, 1971. DOI: 10.1177/002199837100500106.
  • A. Puck, and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models, Compos. Sci. Technol., vol. 62, no. 12-13, pp. 1633–1662, 2002. DOI: 10.1016/S0266-3538(01)00208-1.
  • C. G. Davila, P. P. Camanho, and C. A. Rose, Failure criteria for FRP laminates, J. Compos. Mater., vol. 39, no. 4, pp. 323–345, 2005. DOI: 10.1177/0021998305046452.
  • S. Pinho, L. Iannucci, and P. Robinson, Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development, Compos. Part A Appl. Sci., vol. 37, no. 1, pp. 63–73, 2006. DOI: 10.1016/j.compositesa.2005.04.016.
  • G. Catalanotti, P. Camanho, and A. Marques, Three-dimensional failure criteria for fiber-reinforced laminates, Compos. Struct., vol. 95, pp. 63–79, 2013. DOI: 10.1016/j.compstruct.2012.07.016.
  • S. T. Pinho, C. G. Dávila, P. P. Camanho, L. Iannucci, and P. Robinson, Failure Models and Criteria for Frp under-in-Plane or Three-Dimensional Stress States Including Shear Non-Linearity, NASA/TM-2005-213530, BiblioGov, USA, 2005.
  • T. V. Lisbôa, J. H. S. Almeida, Jr., A. Spickenheuer, M. Stommel, S. C. Amico, and R. J. Marczak, Fem updating for damage modeling of composite cylinders under radial compression considering the winding pattern, Thin-Walled Struct., vol. 173, pp. 108954, 2022. DOI: 10.1016/j.tws.2022.108954.
  • G. F. Ferreira, J. H. S. Almeida, M. L. Ribeiro, A. J. Ferreira, and V. Tita, A finite element unified formulation for composite laminates in bending considering progressive damage, Thin-Walled Struct., vol. 172, pp. 108864, 2022. DOI: 10.1016/j.tws.2021.108864.
  • J. H. S. Almeida, Jr, et al., Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders, Compos. B. Eng., vol. 225, pp. 109224, 2021. DOI: 10.1016/j.compositesb.2021.109224.
  • F. Naya, C. González, C. Lopes, S. Van der Veen, and F. Pons, Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects, Compos. Part A Appl. Sci., vol. 92, pp. 146–157, 2017. DOI: 10.1016/j.compositesa.2016.06.018.
  • A. Melro, P. Camanho, F. Andrade Pires, and S. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II – micromechanical analyses, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1906–1915, 2013. DOI: 10.1016/j.ijsolstr.2013.02.007.
  • M. Romanowicz, A numerical approach for predicting the failure locus of fiber reinforced composites under combined transverse compression and axial tension, Comput. Mater. Sci., vol. 51, no. 1, pp. 7–12, 2012. DOI: 10.1016/j.commatsci.2011.07.039.
  • C. González, and J. LLorca, Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling, Compos. Sci. Technol., vol. 67, no. 13, pp. 2795–2806, 2007. DOI: 10.1016/j.compscitech.2007.02.001.
  • A. Melro, P. Camanho, and S. Pinho, Generation of random distribution of fibres in long-fibre reinforced composites, Compos. Sci. Technol., vol. 68, no. 9, pp. 2092–2102, 2008. DOI: 10.1016/j.compscitech.2008.03.013.
  • M. Herráez, et al., Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: An approach to virtual materials design, Compos. Part A Appl. Sci., vol. 91, pp. 484–492, 2016. DOI: 10.1016/j.compositesa.2016.02.026.
  • L. Wan, et al., Computational micromechanics-based prediction of the failure of unidirectional composite lamina subjected to transverse and in-plane shear stress states, J. Compos. Mater., vol. 54, no. 24, pp. 3637–3654, 2020. DOI: 10.1177/0021998320918015.
  • A. Sharma, S. Daggumati, A. Gupta, and W. Van Paepegem, On the prediction of the bi-axial failure envelope of a ud cfrp composite lamina using computational micromechanics: Effect of microscale parameters on macroscale stress–strain behavior, Compos. Struct., vol. 251, pp. 112605, 2020. DOI: 10.1016/j.compstruct.2020.112605.
  • A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I – constitutive modelling, Int. J. Solids Struct., vol. 50, no. 11-12, pp. 1897–1905, 2013. DOI: 10.1016/j.ijsolstr.2013.02.009.
  • Q. Sun, et al., Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model, Compos. Sci. Technol., vol. 172, pp. 81–95, 2019. DOI: 10.1016/j.compscitech.2019.01.012.
  • K. Xu, W. Chen, L. Liu, Z. Zhao, and G. Luo, A hierarchical multiscale strategy for analyzing the impact response of 3d braided composites, Int. J. Mech. Sci., vol. 193, pp. 106167, 2021. DOI: 10.1016/j.ijmecsci.2020.106167.
  • C. He, et al., A hierarchical multiscale model for the elastic-plastic damage behavior of 3d braided composites at high temperature, Compos. Sci. Technol., vol. 196, pp. 108230, 2020. DOI: 10.1016/j.compscitech.2020.108230.
  • H. Park, and M. Cho, A multiscale framework for the elasto-plastic constitutive equations of crosslinked epoxy polymers considering the effects of temperature, strain rate, hydrostatic pressure, and crosslinking density, J. Mech. Phys. Solids, vol. 142, pp. 103962, 2020. DOI: 10.1016/j.jmps.2020.103962.
  • P. P. Camanho, C. G. Davila, and M. F. de Moura, Numerical simulation of mixed-mode progressive delamination in composite materials, J. Compos. Mater., vol. 37, no. 16, pp. 1415–1438, 2003. DOI: 10.1177/0021998303034505.
  • A. Turon, P. Camanho, J. Costa, and J. Renart, Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness, Compos. Struct., vol. 92, no. 8, pp. 1857–1864, 2010. DOI: 10.1016/j.compstruct.2010.01.012.
  • A. Turon, E. González, C. Sarrado, G. Guillamet, and P. Maimí, Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness, Compos. Struct., vol. 184, pp. 506–511, 2018. DOI: 10.1016/j.compstruct.2017.10.017.
  • X. Lu, M. Ridha, B. Chen, V. Tan, and T. Tay, On cohesive element parameters and delamination modelling, Eng. Fract. Mech., vol. 206, pp. 278–296, 2019. DOI: 10.1016/j.engfracmech.2018.12.009.
  • G. R. Ibrahim, and A. Albarbar, A new approach to the cohesive zone model that includes thermal effects, Compos. B. Eng., vol. 167, pp. 370–376, 2019. DOI: 10.1016/j.compositesb.2019.03.003.
  • T. Yang, K. M. Liechti, and R. Huang, A multiscale cohesive zone model for rate-dependent fracture of interfaces, J. Mech. Phys. Solids, vol. 145, pp. 104142, 2020. DOI: 10.1016/j.jmps.2020.104142.
  • Z. Jia, T. Li, F-p. Chiang, and L. Wang, An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites, Compos. Sci. Technol., vol. 154, pp. 53–63, 2018. DOI: 10.1016/j.compscitech.2017.11.015.
  • Y. Ou, D. Zhu, H. Zhang, Y. Yao, B. Mobasher, and L. Huang, Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures, Compos. B. Eng., vol. 95, pp. 123–136, 2016. DOI: 10.1016/j.compositesb.2016.03.085.
  • K. Wang, B. Young, and S. T. Smith, Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures, Eng. Struct., vol. 33, no. 7, pp. 2154–2161, 2011. DOI: 10.1016/j.engstruct.2011.03.006.
  • S. Swaminathan, S. Ghosh, and N. Pagano, Statistically equivalent representative volume elements for unidirectional composite microstructures: Part I-without damage, J. Compos. Mater., vol. 40, no. 7, pp. 583–604, 2006. DOI: 10.1177/0021998305055273.
  • S. Li, Boundary conditions for unit cells from periodic microstructures and their implications, Compos. Sci. Technol., vol. 68, no. 9, pp. 1962–1974, 2008. DOI: 10.1016/j.compscitech.2007.03.035.
  • X. Bai, M. A. Bessa, A. R. Melro, P. P. Camanho, L. Guo, and W. K. Liu, High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, Compos. Struct., vol. 134, pp. 132–141, 2015. DOI: 10.1016/j.compstruct.2015.08.047.
  • L. F. Varandas, G. Catalanotti, A. Melro, R. Tavares, and B. G. Falzon, Micromechanical modelling of the longitudinal compressive and tensile failure of unidirectional composites: The effect of fibre misalignment introduced via a stochastic process, Int. J. Solids Struct., vol. 203, pp. 157–176, 2020. DOI: 10.1016/j.ijsolstr.2020.07.022.
  • M. L. Benzeggagh, and M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., vol. 56, no. 4, pp. 439–449, 1996. DOI: 10.1016/0266-3538(96)00005-X.
  • J. L. L. G. Duvant, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976. DOI: 10.1007/978-3-642-66165-5.
  • F. Feyel, and J.-L. Chaboche, Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre Sic/Ti composite materials, Comput. Methods Appl. Mech. Eng., vol. 183, no. 3-4, pp. 309–330, 2000. DOI: 10.1016/S0045-7825(99)00224-8.
  • V. B. C. Tan, K. Raju, and H. P. Lee, Direct fe2 for concurrent multilevel modelling of heterogeneous structures, Comput. Methods Appl. Mech. Eng., vol. 360, pp. 112694, 2020. DOI: 10.1016/j.cma.2019.112694.
  • E. Carrera, M. Petrolo, M. Nagaraj, and M. Delicata, Evaluation of the influence of voids on 3D representative volume elements of fiber-reinforced polymer composites using CUF micromechanics, Compos. Struct., vol. 254, pp. 112833, 2020. DOI: 10.1016/j.compstruct.2020.112833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.