185
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A 1D physically based constitutive model for two-way shape memory effects in semicrystalline networks

ORCID Icon, , ORCID Icon, &
Pages 3525-3539 | Received 26 Jan 2022, Accepted 12 May 2022, Published online: 08 Jun 2022

References

  • J. S. Ahn, W. R. Yu, J. H. Youk, and H. Y. Ryu, In situ temperature tunable pores of shape memory polyurethane membranes, Smart Mater. Struct., vol. 20, no. 10, pp. 105024, 2011. DOI: 10.1088/0964-1726/20/10/105024.
  • A. Belmonte, G. C. Lama, P. Cerruti, V. Ambrogi, X. Fernández-Francos, and S. De la Flor, Motion control in free-standing shape-memory actuators, Smart Mater. Struct., vol. 27, no. 7, pp. 75013, 2018. DOI: 10.1088/1361-665X/aac278.
  • M. Bothe, and T. Pretsch, Two-way shape changes of a shape-memory poly(ester urethane), Macromol. Chem. Phys., vol. 213, no. 22, pp. 2378–2385, 2012. DOI: 10.1002/macp.201200096.
  • B. Q. Y. Chan, Z. W. K. Low, S. J. W. Heng, S. Y. Chan, C. Owh, and X. J. Loh, Recent advances in shape memory soft materials for biomedical applications, ACS Appl. Mater. Interfaces., vol. 8, no. 16, pp. 10070–10087, 2016. DOI: 10.1021/acsami.6b01295.
  • T. Chung, A. Rorno-Uribe, and P. T. Mather, Two-way reversible shape memory in a semicrystalline network, Macromolecules, vol. 41, no. 1, pp. 184–192, 2008. DOI: 10.1021/ma071517z.
  • S. Conti, M. Lenz, and M. Rumpf, Modeling and simulation of magnetic-shape-memory polymer composites, J. Mech. Phys. Solids, vol. 55, no. 7, pp. 1462–1486, 2007. DOI: 10.1016/j.jmps.2006.12.008.
  • O. Dolynchuk, I. Kolesov, R. Androsch, and H. J. Radusch, Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation, Polymer, vol. 79, pp. 146–158, 2015. DOI: 10.1016/j.polymer.2015.10.017.
  • O. Dolynchuk, I. Kolesov, and H. J. Radusch, Thermodynamic description and modeling of two-way shape-memory effect in crosslinked semicrystalline polymers, Polym. Adv. Technol., vol. 25, no. 11, pp. 1307–1314, 2014. DOI: 10.1002/pat.3335.
  • R. J. Gaylord, A theory of the stress-induced crystallization of crosslinked polymeric networks, J. Polym. Sci. Polym. Phys. Ed., vol. 14, no. 10, pp. 1827–1837, 1976. DOI: 10.1002/pol.1976.180141008.
  • Q. Ge, et al., Thermomechanical behavior of shape memory elastomeric composites, J. Mech. Phys. Solids, vol. 60, no. 1, pp. 67–83, 2012. DOI: 10.1016/j.jmps.2011.09.011.
  • Q. Ge, K. K. Westbrook, P. T. Mather, M. L. Dunn, and H. J. Qi, Thermomechanical behavior of a two-way shape memory composite actuator, Smart Mater. Struct., vol. 22, no. 5, pp. 55009, 2013. DOI: 10.1088/0964-1726/22/5/055009.
  • J. Kunzelman, T. Chung, P. T. Mather, and C. Weder, Shape memory polymers with built-in threshold temperature sensors, J. Mater. Chem., vol. 18, no. 10, pp. 1082–1086, 2008. DOI: 10.1039/b718445j.
  • G. C. Lama, P. Cerruti, M. Lavorgna, C. Carfagna, V. Ambrogi, and G. Gentile, Controlled actuation of a carbon nanotube/epoxy shape-memory liquid crystalline elastomer, J. Phys. Chem. C, vol. 120, no. 42, pp. 24417–24426, 2016. DOI: 10.1021/acs.jpcc.6b06550.
  • A. Lendlein, H. Y. Jiang, O. Junger, and R. Langer, Light-induced shape-memory polymers, Nature, vol. 434, no. 7035, pp. 879–882, 2005. DOI: 10.1038/nature03496.
  • A. Lendlein, and S. Kelch, Shape-memory polymers, Angew. Chem. Int. Ed., vol. 41, no. 12, pp. 2034–2057, 2002. DOI: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M.
  • J. S. Leng, et al., Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains, Appl. Phys. Lett., vol. 92, no. 1, pp. 14104, 2008. DOI: 10.1063/1.2829388.
  • J. S. Leng, H. B. Lv, Y. J. Liu, and S. Y. Du, Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers, Appl. Phys. Lett., vol. 91, no. 14, pp. 144105, 2007. DOI: 10.1063/1.2790497.
  • J. Li, W. R. Rodgers, and T. Xie, Semi-crystalline two-way shape memory elastomer, Polymer, vol. 52, no. 23, pp. 5320–5325, 2011. DOI: 10.1016/j.polymer.2011.09.030.
  • C. Liu, H. Qin, and P. T. Mather, Review of progress in shape-memory polymers, J. Mater. Chem., vol. 17, no. 16, pp. 1543–1558, 2007. DOI: 10.1039/b615954k.
  • S. Liu, and Q. S. Yang, Finite element analysis of shape-memory polymer mast, Int. J. Smart Nano Mater., vol. 10, no. 4, pp. 285–299, 2019. DOI: 10.1080/19475411.2019.1686666.
  • Y. J. Liu, H. Y. Du, L. W. Liu, and J. S. Leng, Shape memory polymers and their composites in aerospace applications: A review, Smart Mater. Struct., vol. 23, no. 2, pp. 23001, 2014. DOI: 10.1088/0964-1726/23/2/023001.
  • Y. P. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling, Int. J. Plast., vol. 22, no. 2, pp. 279–313, 2006. DOI: 10.1016/j.ijplas.2005.03.004.
  • K. Paderni, S. Pandini, S. Passera, F. Pilati, M. Toselli, and M. Messori, Shape-memory polymer networks from sol–gel cross-linked alkoxysilane-terminated poly(ε-caprolactone), J. Mater. Sci., vol. 47, no. 10, pp. 4354–4362, 2012. DOI: 10.1007/s10853-012-6289-2.
  • J. M. Raquez, et al., Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels-Alder reactions, Chemistry, vol. 17, no. 36, pp. 10135–10143, 2011. DOI: 10.1002/chem.201100496.
  • I. A. Rousseau, and P. T. Mather, Shape memory effect exhibited by smectic-c liquid crystalline elastomers, J. Am. Chem. Soc., vol. 125, no. 50, pp. 15300–15301, 2003. DOI: 10.1021/ja039001s.
  • G. Scalet, S. Pandini, M. Messori, M. Toselli, and F. Auricchio, A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks, Polymer, vol. 158, pp. 130–148, 2018. DOI: 10.1016/j.polymer.2018.10.027.
  • M. Taya, Y. C. Liang, O. C. Namli, H. Tamagawa, and T. Howie, Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite, Smart Mater. Struct., vol. 22, no. 10, pp. 105003, 2013. DOI: 10.1088/0964-1726/22/10/105003.
  • M. C. Wang, and E. Guth, Statistical theory of networks of non‐Gaussian flexible chains, J. Chem. Phys., vol. 20, no. 7, pp. 1144–1157, 1952. DOI: 10.1063/1.1700682.
  • K. K. Westbrook, et al., Constitutive modeling of shape memory effects in semicrystalline polymers with stretch induced crystallization, J. Eng. Mater. Technol. ASME, vol. 132, no. 4, 2010. DOI: 10.1115/1.4001964.
  • Y. Wu, et al., Two-way shape memory polymer with "switch-spring" composition by interpenetrating polymer network, J. Mater. Chem. A, vol. 2, no. 44, pp. 18816–18822, 2014. DOI: 10.1039/C4TA03640A.
  • C. Yan, Q. X. Yang, and G. Q. Li, A phenomenological constitutive model for semicrystalline two-way shape memory polymers, Int. J. Mech. Sci., vol. 177, pp. 105552, 2020. DOI: 10.1016/j.ijmecsci.2020.105552.
  • Q. X. Yang, J. Z. Fan, and G. Q. Li, Artificial muscles made of chiral two-way shape memory polymer fibers, Appl. Phys. Lett., vol. 109, no. 18, pp. 183701, 2016. DOI: 10.1063/1.4966231.
  • K. Yu, Y. J. Liu, and J. S. Leng, Conductive shape memory polymer composite incorporated with hybrid fillers: Electrical, mechanical, and shape memory properties, J. Intell. Mater. Syst. Struct., vol. 22, pp. 369–379, 2011.
  • M. Zare, M. P. Prabhakaran, N. Parvin, and S. Ramakrishna, Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications, Chem. Eng. J., vol. 374, pp. 706–720, 2019. DOI: 10.1016/j.cej.2019.05.167.
  • H. Zeng, H. Sun, and J. Gu, Modeling the one-way and two-way shape memory effects of semi-crystalline polymers, Smart Mater. Struct., vol. 30, no. 9, pp. 95020, 2021. DOI: 10.1088/1361-665X/ac179e.
  • F. Zhao, X. Y. Zheng, S. C. Zhou, B. Zhou, S. F. Xue, and Y. Zhang, Constitutive model for epoxy shape memory polymer with regulable phase transition temperature, Int. J. Smart Nano Mater., vol. 12, no. 1, pp. 72–87, 2021. DOI: 10.1080/19475411.2021.1876176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.