328
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Bending and vibration studies of FG porous sandwich beam with viscoelastic boundary conditions: FE approach

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3588-3607 | Received 10 Mar 2022, Accepted 14 May 2022, Published online: 02 Jun 2022

References

  • R.M. Mahamood, E.T. Akinlabi, M. Shukla, and S. Pityana, Functionally graded material: An overview, Proceedings of the World Congress on Engineering, International Association of Engineers (IAENG), pp. 1593–1597, London, UK, 2012.
  • Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, and R.G. Ford, Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media, Springer New York, NY, 2013. DOI: 10.1007/978-1-4615-5301-4.
  • W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, and S. Karl. Functionally graded materials for biomedical applications, Mater. Sci. Eng. A, vol. 362, no. 1–2, pp. 40–60, 2003. DOI: 10.1016/S0921-5093(03)00580-X.
  • A.S. Sayyad and Y.M. Ghugal, Modeling and analysis of functionally graded sandwich beams: A review, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1776–1795, 2019. DOI: 10.1080/15376494.2018.1447178.
  • A.Y. Al-Maharma, S.P. Patil, and B. Markert, Effects of porosity on the mechanical properties of additively manufactured components: A critical review, Mater. Res. Express, vol. 7, no. 12, pp. 122001, 2020. DOI: 10.1088/2053-1591/abcc5d.
  • M. Vynnycky, On the formation of centreline shrinkage porosity in the continuous casting of steel, J. Math. Ind., vol. 10, pp. 1–26, 2020.
  • Z. Xu, X. Wang, and M. Jiang, Investigation on improvement of center porosity with heavy reduction in continuously cast thick slabs, Steel Res. Int., vol. 88, no. 2, pp. 1600061, 2017. DOI: 10.1002/srin.201600061.
  • J. Wang, Y.H. Zhang, T. Yu, and Q.K. Han, Dynamic characteristics of blade with viscoelastic damping block based on complex eigenvalue method, Shock Vib., vol. 2018, pp. 1–16, 2018. DOI: 10.1155/2018/5068901.
  • D. Han, J. Wang, E.C. Smith, and G.A. Lesieutre, Transient loads control of a variable speed rotor during lagwise resonance crossing, AIAA J., vol. 51, no. 1, pp. 20–29, 2013. DOI: 10.2514/1.J050598.
  • Y.K. Lin, Free vibrations of a continuous beam on elastic supports, Int. J. Mech. Sci., vol. 4, no. 5, pp. 409–423, 1962. DOI: 10.1016/S0020-7403(62)80027-7.
  • K.V. Singh, D. Oliver, and X. Ling, Continuous structures with viscoelastic supports: tuning of material parameters and support location, ASME 2015 Dynamic Systems and Control Conference, Columbus, Ohio, USA, 2015. DOI: 10.1115/DSCC2015-9846.
  • C. Demir and F.E. Oz, Free vibration analysis of a functionally graded viscoelastic supported beam, J. Vib. Control, vol. 20, no. 16, pp. 2464–2486, 2014. DOI: 10.1177/1077546313479634.
  • T.P. Khatua and Y.K. Cheung, Bending and vibration of multilayer sandwich beams and plates, Int. J. Numer. Meth. Eng., vol. 6, no. 1, pp. 11–24, 1973. DOI: 10.1002/nme.1620060103.
  • J.-S. Kao and R.J. Ross, Bending of multilayer sandwich beams, AIAA J., vol. 6, no. 8, pp. 1583–1585, 1968. DOI: 10.2514/3.4815.
  • D.J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vib., vol. 10, no. 2, pp. 163–175, 1969. DOI: 10.1016/0022-460X(69)90193-X.
  • D.J. Mead and S. Markus, Loss factors and resonant frequencies of encastre damped sandwich beams, J. Sound Vib., vol. 12, no. 1, pp. 99–112, 1970. DOI: 10.1016/0022-460X(70)90050-7.
  • E. Magnucka-Blandzi, Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypotheses, Mech. Adv. Mater. Struct., vol. 18, no. 2, pp. 147–158, 2011. DOI: 10.1080/15376494.2010.496065.
  • A. Arikoglu and I. Ozkol, Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method, Compos. Struct., vol. 92, no. 12, pp. 3031–3039, 2010. DOI: 10.1016/j.compstruct.2010.05.022.
  • J. Li, B. Zheng, Q. Yang, and X. Hu, Analysis on time-dependent behavior of laminated functionally graded beams with viscoelastic interlayer, Compos. Struct., vol. 107, pp. 30–35, 2014. DOI: 10.1016/j.compstruct.2013.07.047.
  • R. Patil, S. Joladarashi, and R. Kadoli, Studies on free and forced vibration of functionally graded back plate with brake insulator of a disc brake system, Arch Appl Mech., vol. 90, no. 12, pp. 2693–2714, 2020. DOI: 10.1007/s00419-020-01743-x.
  • M. Motezaker, R. Kolahchi, D.K. Rajak, and S.R. Mahmoud, Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load, Polym. Compos., vol. 42, no. 8, pp. 4073–4081, 2021. DOI: 10.1002/pc.26118.
  • M.S.H. Al-Furjan, M.X. Xu, A. Farrokhian, G.S. Jafari, X. Shen, and R. Kolahchi, On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories, Waves Random Complex Media, pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2030499.
  • E. Carrera, C0 Reissner–Mindlin multilayered plate elements including zig‐zag and interlaminar stress continuity, Int. J. Numer. Meth. Eng., vol. 39, no. 11, pp. 1797–1820, 1996. DOI: 10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-W.
  • E. Carrera and B. Kröplin, Zigzag and interlaminar equilibria effects in large-deflection and postbuckling analysis of multilayered plates, Mech. Adv. Mater. Struct., vol. 4, no. 1, pp. 69–94, 1997. DOI: 10.1080/10759419708945875.
  • E. Carrera, Evaluation of layerwise mixed theories for laminated plates analysis, AIAA J., vol. 36, no. 5, pp. 830–839, 1998. DOI: 10.2514/3.13898.
  • E. Carrera, Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells, Appl. Mech. Rev., vol. 54, no. 4, pp. 301–329, 2001. DOI: 10.1115/1.1385512.
  • E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • E. Carrera, S. Brischetto, and A. Robaldo, Variable kinematic model for the analysis of functionally graded material plates, AIAA J., vol. 46, no. 1, pp. 194–203, 2008. DOI: 10.2514/1.32490.
  • D. Onvani, A. Jafari, and M.B. Dehkordi, Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores, Mech. Adv. Mater. Struct., pp. 1–15, 2021. DOI: 10.1080/15376494.2021.1983899.
  • E. Edition, Y. Liu, Z. Qin, and F. Chu, Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance, Appl. Math. Mech., vol. 42, pp. 805–818, 2021.
  • Y. Liu, Z. Qin, and F. Chu, Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate, Nonlinear Dyn., vol. 104, no. 2, pp. 1007–1021, 2021. DOI: 10.1007/s11071-021-06358-7.
  • Y. Liu, Z. Qin, and F. Chu, Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells, Commun. Nonlinear Sci. Numer. Simul., vol. 107, pp. 106146, 2022. DOI: 10.1016/j.cnsns.2021.106146.
  • W. Gao, Z. Qin, and F. Chu, Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerosp. Sci. Technol., vol. 102, pp. 105860, 2020. DOI: 10.1016/j.ast.2020.105860.
  • Z. Qin, S. Zhao, X. Pang, B. Safaei, and F. Chu, A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions, Int. J. Mech. Sci., vol. 170, pp. 105341 2020. DOI: 10.1016/j.ijmecsci.2019.105341.
  • A.A. Daikh and A.M. Zenkour, Effect of porosity on the bending analysis of various functionally graded sandwich plates, Mater. Res. Express, vol. 6, no. 6, pp. 065703, 2019. DOI: 10.1088/2053-1591/ab0971.
  • F.A. Fazzolari, Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations, Compos. Part B Eng., vol. 136, pp. 254–271, 2018. DOI: 10.1016/j.compositesb.2017.10.022.
  • L. Hadji and M. Avcar, Free vibration analysis of FG porous sandwich plates under various boundary conditions, J. Appl. Comput. Mech., vol. 7, pp. 505–519, 2021.
  • Y. Zhang, G. Jin, M. Chen, T. Ye, C. Yang, and Y. Yin, Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core, Compos. Struct., vol. 244, pp. 112298, 2020. DOI: 10.1016/j.compstruct.2020.112298.
  • M.S.H. Al‐Furjan, Y. Yang, A. Farrokhian, X. Shen, R. Kolahchi, and D.K. Rajak, Dynamic instability of nanocomposite piezoelectric‐leptadenia pyrotechnica rheological elastomer‐porous functionally graded materials micro viscoelastic beams at various strain gradient higher‐order theories, Polym. Compos., vol. 43, no. 1, pp. 282–298, 2022. DOI: 10.1002/pc.26373.
  • R. Lakes and R.S. Lakes, Viscoelastic Materials, Cambridge University Press, New York, NY, USA, 2009. DOI: 10.1017/CBO9780511626722.
  • Y. Shi, H. Sol, and H. Hua, Material parameter identification of sandwich beams by an inverse method, J. Sound Vib. vol. 290, pp. 1234–1255, 2006.
  • C.D. Johnson, and D.A. Kienholz, Finite element prediction of damping in structures with constrained viscoelastic layers, AIAA J. vol. 20, pp. 1284–1290, 1982.
  • S.-J. Tang, and A. Lumsdaine, Analysis of constrained damping layers, including normal-strain effects, AIAA J. vol. 46, pp. 2998–3011, 2008.
  • M. Mace, Damping of beam vibrations by means of a thin constrained viscoelastic layer: evaluation of a new theory, J. Sound Vib. vol. 172, pp. 577–591, 1994.
  • S.-W. Kung, and R. Singh, Vibration analysis of beams with multiple constrained layer damping patches, J. Sound Vib. vol. 212, pp. 781–805, 1998.
  • J.X. Gao, and W.H. Liao, Vibration analysis of simply supported beams with enhanced self-sensing active constrained layer damping treatments, J. Sound Vib. vol. 280, pp. 329–357, 2005.
  • A.K. Lall, N.T. Asnani, and B.C. Nakra, Damping analysis of partially covered sandwich beams, J. Sound Vib. vol. 123, pp. 247–259, 1988.
  • W.-P. Yang, L.-W. Chen, and C.-C. Wang, Vibration and dynamic stability of a traveling sandwich beam, J. Sound Vib. vol. 285, pp. 597–614, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.