362
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The thermal-mechanical buckling and postbuckling design of composite laminated plate using a ROM-driven optimization method

ORCID Icon, , &
Pages 3847-3861 | Received 14 Mar 2022, Accepted 27 May 2022, Published online: 20 Jun 2022

References

  • F. Moleiro, V. M. Franco-Correia, A. J. M. Ferreira, and J. N. Reddy, Fully coupled thermo-mechanical analysis of multilayered plates with embedded FGM skins or core layers using a layerwise mixed model, Compos. Struct., vol. 210, pp. 971–996, 2019. DOI: 10.1016/j.compstruct.2018.11.073.
  • F. Moleiro, J. F. A. Madeira, E. Carrera, and A. J. M. Ferreira, Thermo-mechanical design optimization of symmetric and non-symmetric sandwich plates with ceramic-metal-ceramic functionally graded core to minimize stress, deformation and mass, Compos. Struct., vol. 276, p. 114496, 2021. DOI: 10.1016/j.compstruct.2021.114496.
  • A. R. Vosoughi, P. Malekzadeh, M. R. Banan, and M. R. Banan, Thermal postbuckling of laminated composite skew plates with temperature-dependent properties, Thin-Walled Struct., vol. 49, no. 7, pp. 913–922, 2011. DOI: 10.1016/j.tws.2011.02.017.
  • S. Kamarian and M. Shakeri, Thermal buckling analysis and stacking sequence optimization of rectangular and skew shape memory alloy hybrid composite plates, Compos. B: Eng., vol. 116, pp. 137–152, 2017. DOI: 10.1016/j.compositesb.2017.01.059.
  • P. Akbari and A. Asanjarani, Semi-analytical mechanical and thermal buckling analyses of 2D-FGM circular plates based on the FSDT, Mech. Adv. Mater. Struct., vol. 26, no. 9, pp. 753–764, 2019. DOI: 10.1080/15376494.2017.1410913.
  • A. Hajlaoui, E. Chebbi, and F. Dammak, Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element, Int. J. Press. Vessel. Pip., vol. 194, p. 104547, 2021. DOI: 10.1016/j.ijpvp.2021.104547.
  • G. Raju, Z. Wu, S. White, and P. M. Weaver, Optimal postbuckling design of variable angle tow composite plates, AIAA J., vol. 56, no. 5, pp. 2045–2061, 2018. DOI: 10.2514/1.J056043.
  • E. Carrera, Temperature profile influence on layered plates response considering classical and advanced theories, AIAA J., vol. 40, no. 9, pp. 1885–1896, 2002. DOI: 10.2514/2.1868.
  • Y. Ge, W. Yuan, and D. J. Dawe, Thermomechanical postbuckling of composite laminated plates by the spline finite strip method, Compos. Struct., vol. 71, no. 1, pp. 115–129, 2005. DOI: 10.1016/j.compstruct.2004.12.003.
  • Y. L. Pi and M. Bradford, Effects of nonlinearity and temperature field on in-plane behaviour and buckling of crown-pinned steel arches, Eng. Struct., vol. 74, pp. 1–12, 2014. DOI: 10.1016/j.engstruct.2014.05.006.
  • Y. Liu, S. Su, H. Huang, and Y. Liang, Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane, Compos. B: Eng., vol. 168, pp. 236–242, 2019. DOI: 10.1016/j.compositesb.2018.12.063.
  • Y. Bayat and H. E. Toussi, Analytical layerwise solution of nonlinear thermal instability of SMA hybrid composite beam under nonuniform temperature condition, Mech. Adv. Mater. Struct., vol. 27, no. 19, pp. 1673–1686, 2020. DOI: 10.1080/15376494.2018.1524950.
  • A. Morshedifard, M. Ruiz-Garcĺa, M. J. A. Qomi, and A. Košmrlj, Buckling of thermalized elastic sheets, J. Mech. Phys. Solids., vol. 149, p. 104296, 2021. DOI: 10.1016/j.jmps.2021.104296.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, West Sussex, 2014.
  • E. Carrera and B. Kroplin, Zigzag and interlaminar equilibria effects in large-deflection and postbuckling analysis of multilayered plates, Mech. Adv. Mater. Struct., vol. 4, no. 1, pp. 69–94, 1997. DOI: 10.1080/10759419708945875.
  • E. Carrera, Transverse normal stress effects in multilayered plates, J. Appl. Mech., Trans. ASME, vol. 66, no. 4, pp. 1004–1012, 1999. DOI: 10.1115/1.2791769.
  • A. Robaldo, E. Carrera, and A. Benjeddou, A unified formulation for finite element analysis of piezoelectric adaptive plates, Comput. Struct., vol. 84, no. 22–23, pp. 1494–1505, 2006. DOI: 10.1016/j.compstruc.2006.01.029.
  • E. Carrera, F. Miglioretti, and M. Petrolo, Accuracy of refined finite elements for laminated plate analysis, Compos. Struct., vol. 93, no. 5, pp. 1311–1327, 2011. DOI: 10.1016/j.compstruct.2010.11.007.
  • E. Carrera, G. Giunta, and M. Petrolo, Beam Structures: Classical and Advanced Theories, John Wiley & Sons, Chichester, West Sussex, 2011.
  • E. Carrera, M. Petrolo, and E. Zappino, Performance of CUF approach to analyze the structural behavior of slender bodies, J. Struct. Eng., vol. 138, no. 2, pp. 285–297, 2012. DOI: 10.1061/(ASCE)ST.1943-541X.0000402.
  • E. Carrera, A. Pagani, and M. Petrolo, Classical, refined, and component-wise analysis of reinforced-shell wing structures, AIAA J., vol. 51, no. 5, pp. 1255–1268, 2013. DOI: 10.2514/1.J052331.
  • A. Pagani, A. G. de Miguel, M. Petrolo, and E. Carrera, Analysis of laminated beams via Unified Formulation and Legendre polynomial expansions, Compos. Struct., vol. 156, pp. 78–92, 2016. DOI: 10.1016/j.compstruct.2016.01.095.
  • F. A. Fazzolari and E. Carrera, Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core, J. Sound Vib., vol. 333, no. 5, pp. 1485–1508, 2014. DOI: 10.1016/j.jsv.2013.10.030.
  • E. Carrera, M. Filippi, and E. Zappino, Free vibration analysis of rotating composite blades via Carrera Unified Formulation, Compos. Struct., vol. 106, pp. 317–325, 2013. DOI: 10.1016/j.compstruct.2013.05.055.
  • A. Pagani, E. Carrera, M. Boscolo, and J. R. Banerjee, Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions, Compos. Struct., vol. 110, no. 1, pp. 305–316, 2014. DOI: 10.1016/j.compstruct.2013.12.010.
  • S. M. R. Khalili, M. Botshekanan Dehkordi, E. Carrera, and M. Shariyat, Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory, Compos. Struct., vol. 96, pp. 243–255, 2013. DOI: 10.1016/j.compstruct.2012.08.020.
  • E. Carrera, M. Boscolo, and A. Robaldo, Hierarchic multilayered plate elements for coupled multifield problems of piezoelectric adaptive structures: Formulation and numerical assessment, Arch. Comput. Methods Eng., vol. 14, no. 4, pp. 383–430, 2007. DOI: 10.1007/s11831-007-9012-8.
  • M. Cinefra, E. Carrera, S. Brischetto, and S. Belouettar, Thermo-mechanical analysis of functionally graded shells, J. Therm. Stresses, vol. 33, no. 10, pp. 942–963, 2010. DOI: 10.1080/01495739.2010.482379.
  • F. Fazzolari and E. Carrera, Thermal stability of FGM sandwich plates under various through-the-thickness temperature distributions, J. Therm. Stress., vol. 37, no. 12, pp. 1449–1481, 2014. DOI: 10.1080/01495739.2014.937251.
  • M. Farrokh, M. Afzalia, and E. Carrera, Mechanical and thermal buckling loads of rectangular FG plates by using higher-order unified formulation, Mech. Adv. Mater. Struct., vol. 28, no. 6, pp. 608–617, 2021. DOI: 10.1080/15376494.2019.1578014.
  • M. K. Singha, L. Ramachandra, and J. Bandyopadhyay, Optimum design of laminated composite plates for maximum thermal buckling loads, J. Compos. Mater., vol. 34, no. 23, pp. 1982–1997, 2000. DOI: 10.1177/002199800772661930.
  • P. Malekzadeh, A. R. Vosoughi, M. Sadeghpour, and H. R. Vosoughi, Thermal buckling optimization of temperature-dependent laminated composite skew plates, J. Aerosp. Eng., vol. 27, no. 1, pp. 64–75, 2014. DOI: 10.1061/(ASCE)AS.1943-5525.0000220.
  • A. R. Vosoughi and M. R. Nikoo, Maximum fundamental frequency and thermal buckling temperature of laminated composite plates by a new hybrid multi-objective optimization technique, Thin-Walled Struct., vol. 95, pp. 408–415, 2015. DOI: 10.1016/j.tws.2015.07.014.
  • S. Kamarian, M. Shakeri, and M. H. Yas, Thermal buckling optimisation of composite plates using firefly algorithm, J. Exp. Theor. Artif. Intell., vol. 29, no. 4, pp. 787–794, 2017. DOI: 10.1080/0952813X.2016.1259267.
  • X. Zhou, X. Ruan, and P. D. Gosling, Thermal buckling optimization of variable angle tow fibre composite plates with gap/overlap free design, Compos. Struct., vol. 223, p. 110932, 2019. DOI: 10.1016/j.compstruct.2019.110932.
  • Y. Xue, Y. Zhang, and J. Li, Optimization of thermal buckling control for composite laminates with PFRC actuators using trigonometric shear deformation theory, J. Mech. Sci. Technol., vol. 35, no. 1, pp. 257–266, 2021. DOI: 10.1007/s12206-020-1225-x.
  • S. T. Ijsselmuiden, M. M. Abdalla, and Z. Gürdal, Optimization of variable-stiffness panels for maximum load using lamination parameters, AIAA J., vol. 48, no. 1, pp. 134–143, 2010. DOI: 10.2514/1.42490.
  • P. Hao, B. Wang, G. Li, Z. Meng, and L. Wang, Hybrid framework for reliability-based design optimization of imperfect stiffened shells, AIAA J., vol. 53, no. 10, pp. 2878–2889, 2015. DOI: 10.2514/1.J053816.
  • S. Nikbakt, S. Kamarian, and M. Shakeri, A review on optimization of composite structures Part I: Laminated composites, Compos. Struct., vol. 195, pp. 158–185, 2018. DOI: 10.1016/j.compstruct.2018.03.063.
  • G. Garcea, A. Madeo, G. Zagari, and R. Casciaro, Asymptotic postbuckling fem analysis using co-rotational formulation, Int. J. Solids Struct., vol. 46, no. 2, pp. 377–397, 2009. DOI: 10.1016/j.ijsolstr.2008.08.038.
  • S. E. Azam and S. Mariani, Investigation of computational and accuracy issues in POD-based reduced order modeling of dynamic structural systems, Eng. Struct., vol. 54, pp. 150–167, 2013. DOI: 10.1016/j.engstruct.2013.04.004.
  • A. Madeo, R. M. J. Groh, G. Zucco, P. M. Weaver, G. Zagari, and R. Zinno, Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct., vol. 110, pp. 1–13, 2017. DOI: 10.1016/j.tws.2016.10.012.
  • K. Liang, M. Abdalla, and Z. Gürdal, A Koiter-Newton approach for nonlinear structural analysis, Int. J. Numer. Methods Eng., vol. 96, no. 12, pp. 763–786, 2013. DOI: 10.1002/nme.4581.
  • Q. Huang, J. Choe, J. Yang, Y. Hui, R. Xu, and H. Hu, An efficient approach for post-buckling analysis of sandwich structures with elastic-plastic material behavior, Int. J. Eng. Sci., vol. 142, pp. 20–35, 2019. DOI: 10.1016/j.ijengsci.2019.05.018.
  • B. Cochelin, N. Damil, and M. Potier-Ferry, Asymptotic-numerical methods and Padé approximants for nonlinear elastic structures, Int. J. Numer. Methods Eng., vol. 37, no. 7, pp. 1187–1213, 1994. DOI: 10.1002/nme.1620370706.
  • F. Xu, M. Potier-Ferry, S. Belouettar, and H. Hu, Multiple bifurcations in wrinkling analysis of thin films on compliant substrates, Int. J. Non-Linear Mech., vol. 76, pp. 203–222, 2015. DOI: 10.1016/j.ijnonlinmec.2014.12.006.
  • Q. Huang, J. Choe, J. Yang, R. Xu, Y. Hui, and H. Hu, The effects of kinematics on post-buckling analysis of sandwich structures, Thin-Walled Struct., vol. 143, p. 106204, 2019. DOI: 10.1016/j.tws.2019.106204.
  • P. Tiso, Finite element based reduction methods for static and dynamic analysis of thin-walled structures. Ph.D. thesis, Delft University of Technology, 2006.
  • T. Rahman, S. T. Ijsselmuiden, M. M. Abdalla, and E. L. Jansen, Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method, Int. J. Str. Stab. Dyn., vol. 11, no. 04, pp. 735–753, 2011. DOI: 10.1142/S0219455411004324.
  • D. Magisano, L. Leonetti, and G. Garcea, Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements, Int. J. Numer. Methods Eng., vol. 109, no. 9, pp. 1237–1262, 2017. DOI: 10.1002/nme.5322.
  • D. Magisano, K. Liang, G. Garcea, L. Leonetti, and M. Ruess, An efficient mixed variational reduced order model formulation for non-linear analyses of elastic shells, Int J Numer Methods Eng., vol. 113, no. 4, pp. 634–655, 2018. DOI: 10.1002/nme.5629.
  • F. S. Liguori, D. Magisano, A. Madeo, L. Leonetti, and G. Garcea, A Koiter reduction technique for the nonlinear thermoelastic analysis of shell structures prone to buckling, Numer. Methods Eng., vol. 123, no. 2, pp. 547–576, 2022. DOI: 10.1002/nme.6868.
  • K. Liang, M. Ruess, and M. Abdalla, The Koiter-Newton approach using von Kármán kinematics for buckling analyses of imperfection sensitive structures, Comput. Methods Appl. Mech. Eng., vol. 279, no. 1, pp. 440–468, 2014. DOI: 10.1016/j.cma.2014.07.008.
  • K. Liang, M. M. Abdalla, and Q. Sun, A modified Newton-type Koiter-Newton method for tracing the geometrically nonlinear response of structures, Int. J. Numer. Methods Eng., vol. 113, no. 10, pp. 1541–1560, 2018. DOI: 10.1002/nme.5709.
  • C. Felippa and C. Militello, Construction of optimal 3-node plate bending triangles by templates, Comput. Mech., vol. 24, no. 1, pp. 1–13, 1999. DOI: 10.1007/s004660050433.
  • D. J. Allman, A simple cubic displacement element for plate bending, Int. J. Numer. Methods Eng., vol. 10, no. 2, pp. 263–281, 1976. DOI: 10.1002/nme.1620100204.
  • D. J. Allman, A compatible triangular element including vertex rotations for plane elasticity analysis, Comput. Struct., vol. 19, no. 1–2, pp. 1–8, 1984. DOI: 10.1016/0045-7949(84)90197-4.
  • N. Kristanic and J. Korelc, Optimization method for the determination of the most unfavorable imperfection of structures, Comput. Mech., vol. 42, no. 6, pp. 859–872, 2008. DOI: 10.1007/s00466-008-0288-9.
  • E. Lindgaard and E. Lund, Nonlinear buckling optimization of composite structures, Comput. Methods Appl. Mech. Eng., vol. 199, no. 37–40, pp. 2319–2330, 2010. DOI: 10.1016/j.cma.2010.02.005.
  • S. G. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimov, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct., vol. 74, pp. 118–132, 2014. DOI: 10.1016/j.tws.2013.08.011.
  • S. G. Castro, R. Zimmermann, M. A. Arbelo, and R. Degenhardt, Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors, Thin-Walled Struct., vol. 72, no. 10, pp. 76–87, 2013. DOI: 10.1016/j.tws.2013.06.016.
  • L. Wang and C. Xiong, A novel methodology of sequential optimization and non-probabilistic time-dependent reliability analysis for multidisciplinary systems, Aerosp. Sci. Technol., vol. 94, p. 105389, 2019. DOI: 10.1016/j.ast.2019.105389.
  • C. Xiong, L. Wang, G. H. Liu, and Q. H. Shi, An iterative dimension-by-dimension method for structural interval response prediction with multidimensional uncertain variables, Aerosp. Sci. Technol., vol. 86, pp. 572–581, 2019. DOI: 10.1016/j.ast.2019.01.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.