213
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Predictions of loading capacity and stiffness of corroded circular steel tubes based on artificial neural networks

ORCID Icon, , , , &
Pages 4040-4051 | Received 05 Apr 2022, Accepted 05 Jun 2022, Published online: 14 Jun 2022

References

  • J. Zhang, X.H. Shi, and C.G. Soares, Experimental analysis of residual ultimate strength of stiffened panels with pitting corrosion under compression, Eng. Struct., vol. 152, pp. 70–86, 2017. DOI: 10.1016/j.engstruct.2017.08.069.
  • Y. Chen, H. Zhang, J. Zhang, X. Liu, X. Li, and J. Zhou, Residual bending capacity for pipelines with corrosion defects, J. Loss Prev. Process Ind., vol. 32, pp. 70–77, 2014. DOI: 10.1016/j.jlp.2014.07.011.
  • H. Wang, Z. Zhang, H. Qian, and F. Fan, Effect of local corrosion on the axial compression behavior of circular steel tubes, Eng. Struct., vol. 224, pp. 111205–111214, 2020. DOI: 10.1016/j.engstruct.2020.111205.
  • H. Wang, Z. Zhang, H. Qian, Y. Liu, N. Hu, and F. Fan, Galvanic corrosion induced localized defects and resulting strength reduction of circular steel tubes under axial compression: an experimental study, Thin-Walled Struct., vol. 154, pp. 106881–106812, 2020. DOI: 10.1016/j.tws.2020.106881.
  • H. Wang, Z. Zhang, H. Qian, G. Song, J. Wan, and F. Fan, On the axial bearing capability of construction steel tube considering the uniform corrosion effect, Indian J. Eng. Mater. Sci., vol. 27, pp. 168–178, 2020.
  • C.G. Schilling, Buckling strength of circular tubes, J. Struct. Div., vol. 91, no. 5, pp. 325–348, 1965. DOI: 10.1061/JSDEAG.0001335.
  • L. Guo, S. Yang, and H. Jiao, Behavior of thin-walled circular hollow section tubes subjected to bending, Thin-Walled Struct., vol. 73, pp. 281–289, 2013. DOI: 10.1016/j.tws.2013.08.014.
  • L. Guo, Y. Liu, H. Jiao, and S. An, Behavior of thin-walled circular hollow section stub columns under axial compression, Int. J. Steel Struct., vol. 16, no. 3, pp. 777–787, 2016. DOI: 10.1007/s13296-015-0159-0.
  • S.V. Devi and K.D. Singh, Finite element study of lean duplex stainless steel semi-elliptical hollow section members with circular perforation subjected to torsion, Thin-Walled Struct., vol. 146, p. 106464, 2020. DOI: 10.1016/j.tws.2019.106464.
  • J.X. Yu, H.K. Wang, Y. Yu, Z. Luo, W.D. Liu, and C.M. Wang, Corrosion behavior of X65 pipeline steel: comparison of wet-dry cycle and full immersion, Corros. Sci., vol. 133, pp. 276–287, 2018. DOI: 10.1016/j.corsci.2018.01.007.
  • H. Wang, Y. Yu, J. Yu, J. Duan, Y. Zhang, Z. Li, and C. Wang, Effect of 3D random pitting defects on the collapse pressure of pipe—part I: experiment, Thin-Walled Struct., vol. 129, pp. 512–526, 2018. DOI: 10.1016/j.tws.2018.04.015.
  • Y. Yuan, N. Zhang, H. Liu, Z. Zhao, X. Fan, and H. Zhang, Influence of random pit corrosion on axial stiffness of thin-walled circular tubes, Structures, vol. 28, pp. 2596–2604, 2020. DOI: 10.1016/j.istruc.2020.10.080.
  • M.R. Khedmati and Z. H. M. E. Nouri, Analytical simulation of nonlinear elastic–plastic average stress–average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression, Thin-Wall Struct., vol. 86, pp. 132–141, 2015. DOI: 10.1016/j.tws.2014.10.012.
  • Z. Zhao, N. Zhang, J. Wu, Y. Gao, and Q. Sun, Shear capacity of steel plate with randomly local corrosion, Constr. Build. Mater., vol. 239, p. 117816, 2020. DOI: 10.1016/j.conbuildmat.2019.117816.
  • Z. Zhao, H. Liu, and B. Liang, Probability distribution of the compression capacity of welded hollow spherical joints with randomly located corrosion, Thin-Walled Struct., vol. 137, pp. 167–176, 2019. DOI: 10.1016/j.tws.2019.01.031.
  • Z. Zhao and G. Wu, The probabilistic distribution model and prediction of compression capacity of randomly corroded WHSJs, Eng. Mech., vol. 38, no. 5, pp. 219–228, 2021. DOI: 10.6052/j.issn.1000-4750.2020.07.0472.
  • P. Van der Weeën, A.M. Zimer, E.C. Pereira, L.H. Mascaro, O.M. Bruno, and B. De Baets, Modeling pitting corrosion by means of a 3D discrete stochastic model, Corros. Sci., vol. 82, pp. 133–144, 2014. DOI: 10.1016/j.corsci.2014.01.010.
  • N. Murer and R.G. Buchheit, Stochastic modeling of pitting corrosion in aluminum alloys, Corros. Sci., vol. 69, pp. 139–148, 2013. DOI: 10.1016/j.corsci.2012.11.034.
  • Z. Zhao, P. Zhang, S. Zhou, and X. Fan, Collapse pressure of randomly corroded spherical shell, Ocean Eng., vol. 246, p. 110604, 2022. DOI: 10.1016/j.oceaneng.2022.110604.
  • H. Yang, X. Xu, B. Kargoll, and I. Neumann, An automatic and intelligent optimal surface modeling method for composite tunnel structures, Compos. Struct., vol. 208, pp. 702–710, 2019. DOI: 10.1016/j.compstruct.2018.09.082.
  • X. Xu, N. Fallahi, and H. Yang, Efficient CUF-based FEM analysis of thin-wall structures with Lagrange polynomial expansion, Mech. Adv. Mater. Struct., vol. 29, pp. 1316–1337, 2022. DOI: 10.1080/15376494.2020.1818331.
  • X. Xu and H. Yang, Vision measurement of tunnel structures with robust modelling and deep learning algorithms, Sensors, vol. 20, no. 17, p. 4945, 2020. DOI: 10.3390/s20174945.
  • U. Meher and M.R. Sunny, Detection of multiple structural damages from drive point and cross electro-mechanical impedance signatures, Mech. Adv. Mater. Struct., pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1937757.
  • E.W.M. Lee and H.F. Lam, Intelligent-based structural damage detection model, Mech. Adv. Mater. Struct., vol. 18, no. 8, pp. 590–596, 2011. DOI: 10.1080/15376494.2011.621838.
  • S. Mouloodi, H. Rahmanpanah, C. Burvill, S. Gohari, and H.M.S. Davies, Experimental, regression learner, numerical, and artificial neural network analyses on a complex composite structure subjected to compression loading, Mech. Adv. Mater. Struct., pp. 1–17, 2021. DOI: 10.1080/15376494.2020.1864071.
  • M.H. El Ouni and A. Raza, Data-driven analysis of concrete-filled steel-tube CFRP-confined NSC columns, Mech. Adv. Mater. Struct., pp. 1–22, 2021. DOI: 10.1080/15376494.2021.1961953.
  • X. Li, M. Guo, and X. Zhou, A multivariate multiple regression analysis of tire-road contact peak triaxial stress by using machine learning methods, Mech. Adv. Mater. Struct., pp. 1–16, 2021.
  • D. Colorado-Garrido, D.M. Ortega-Toledo, J.A. Hernández, J.G. González-Rodríguez, and J. Uruchurtu, Neural networks for Nyquist plots prediction during corrosion inhibition of a pipeline steel, J. Solid State Electrochem., vol. 13, no. 11, pp. 1715–1722, 2009. DOI: 10.1007/s10008-008-0728-7.
  • A. Bassam, D. Ortega-Toledo, J.A. Hernandez, J.G. Gonzalez-Rodriguez, and J. Uruchurtu, Artificial neural network for the evaluation of CO2 corrosion in a pipeline steel, J. Solid State Electrochem., vol. 13, no. 5, pp. 773–780, 2009. DOI: 10.1007/s10008-008-0588-1.
  • Z. Zhao, S. Zhou, L. Tang, and C. Zheng, Predictions of compression capacity of randomly corroded WHSJs based on artificial neural network, Mech. Adv. Mater. Struct., vol. 29, no. 15, pp. 2156–2164, 2022. DOI: 10.1080/15376494.2020.1852457.
  • Z. Zhao, C. Zheng, J. Zhang, B. Liang, and H. Zhang, Influence of random pitting-corrosion on moment capacity of thin-walled circular tubes subjected to compression force, Int. J. Press. Vessel. Pip., vol. 189, p. 104260, 2021. DOI: 10.1016/j.ijpvp.2020.104260.
  • Z. Zhao, H. Zhu, and Z. Chen, Study on mechanical behavior of welded box member based on multi-scale models, J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 1, pp. 309–319, 2017. DOI: 10.1007/s40430-016-0512-z.
  • F. Ahmadi, A. Rahbar Ranji, and H. Nowruzi, Ultimate strength prediction of corroded plates with center-longitudinal crack using FEM and ANN, Ocean Eng., vol. 206, p. 107281, 2020. DOI: 10.1016/j.oceaneng.2020.107281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.