142
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of butt joints of prepreg plies on the tensile mechanical performance and fracture behavior of carbon/epoxy laminates

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4291-4302 | Received 26 Mar 2022, Accepted 18 Jun 2022, Published online: 25 Jun 2022

References

  • M. Lan, D. Cartié, P. Davies, et al., Microstructure and tensile properties of carbon-epoxy laminates produced by automated fibre placement: Influence of a caul plate on the effects of gap and overlap embedded defects, Compos. Part A Appl. Sci. Manuf., vol. 78, pp. 124–134, 2015. DOI: 10.1016/j.compositesa.2015.07.023.
  • M. K. Hagnell, B. Langbeck, and M. Åkermo, Cost efficiency, integration and assembly of a generic composite aeronautical wing box, Compos. Struct., vol. 152, pp. 1014–1023, 2016. DOI: 10.1016/j.compstruct.2016.06.032.
  • S. Min, X. Chen, Y. Chai, et al., Effect of reinforcement continuity on the ballistic performance of composites reinforced with multiply plain weave fabric, Compos. Part B Eng., vol. 90, pp. 30–36, 2016. DOI: 10.1016/j.compositesb.2015.12.001.
  • ASTM D5687M-95, Standard guide for preparation of flat composite panels with processing guidelines for specimen preparation, ASTM Int., vol. 15, pp. 1–16, 2015.
  • O. Falcó, J. A. Mayugo, C. S. Lopes, et al., Variable-stiffness composite panels: Defect tolerance under in-plane tensile loading, Compos. Part A Appl. Sci. Manuf., vol. 63, pp. 21–31, 2014. DOI: 10.1016/j.compositesa.2014.03.022.
  • M. Lan, D. Cartié, P. Davies, et al., Composites: Part A Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon – epoxy laminates, vol. 82, pp. 198–207, 2016. DOI: 10.1016/j.compositesa.2015.12.007.
  • A. Marouene, R. Boukhili, J. Chen, et al., Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates - A numerical and experimental study, Compos Struct., vol. 140, pp. 556–566, 2016. DOI: 10.1016/j.compstruct.2016.01.012.
  • A. Marouene, R. Boukhili, J. Chen, et al., Buckling behavior of variable-stiffness composite laminates manufactured by the tow-drop method, Compos Struct., vol. 139, pp. 243–253, 2016. DOI: 10.1016/j.compstruct.2015.12.025.
  • K. Croft, L. Lessard, D. Pasini, et al., Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates, Compos. Part A Appl. Sci. Manuf., vol. 42, no. 5, pp. 484–491, 2011. DOI: 10.1016/j.compositesa.2011.01.007.
  • G. Czél, S. Pimenta, M. R. Wisnom, et al., Demonstration of pseudo-ductility in unidirectional discontinuous carbon fibre/epoxy prepreg composites, Compos. Sci. Technol., vol. 106, pp. 110–119, 2015. DOI: 10.1016/j.compscitech.2014.10.022.
  • R. Malkin, M. Yasaee, R. S. Trask, et al., Bio-inspired laminate design exhibiting pseudo-ductile (graceful) failure during flexural loading, Compos. Part A Appl. Sci. Manuf., vol. 54, pp. 107–116, 2013. DOI: 10.1016/j.compositesa.2013.07.008.
  • G. Czél, M. Jalalvand, and M. R. Wisnom, Demonstration of pseudo-ductility in unidirectional hybrid composites made of discontinuous carbon/epoxy and continuous glass/epoxy plies, Compos. Part A Appl. Sci. Manuf., vol. 72, pp. 75–84, 2015. DOI: 10.1016/j.compositesa.2015.01.019.
  • Z. Xin, Y. Duan, J. Zhou, et al., Effect of tailored plies on the energy absorption capability of square CFRP tubes with discontinuous fibers, Compos Struct., vol. 209, pp. 150–159, 2019. DOI: 10.1016/j.compstruct.2018.09.010.
  • J. N. Baucom, J. P. Thomas, W. R. Pogue, et al., Tiled composite laminates, J. Compos. Mater., vol. 44, no. 26, pp. 3115–3132, 2010. DOI: 10.1177/0021998310373516.
  • J. Ahamed, M. Joosten, P. Callus, et al., Ply-interleaving technique for joining hybrid carbon/glass fibre composite materials, Compos. Part A Appl. Sci. Manuf., vol. 84, pp. 134–146, 2016. DOI: 10.1016/j.compositesa.2016.01.010.
  • J. Ahamed, M. Joosten, P. Callus, et al., Ply-overlap hybrid technique for joining dissimilar composite materials, Mater. Des., vol. 100, pp. 157–167, 2016. DOI: 10.1016/j.matdes.2016.03.112.
  • D. Fanteria, L. Lazzeri, E. Panettieri, et al., Experimental characterization of the interlaminar fracture toughness of a woven and a unidirectional carbon/epoxy composite, Compos. Sci. Technol., vol. 142, pp. 20–29, 2017. DOI: 10.1016/j.compscitech.2017.01.028.
  • N. Alif, L. A. Carlsson, and L. Boogh, The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites, Compos. Part B. Eng., vol. 29, no. 5, pp. 603–611, 1998. DOI: 10.1016/S1359-8368(98)00014-6.
  • P. Wang, H. Lei, X. Zhu, et al., Effect of manufacturing defect on mechanical performance of plain weave carbon/epoxy composite based on 3D geometrical reconstruction, Compos Struct., vol. 199, pp. 38–52, 2018. DOI: 10.1016/j.compstruct.2018.05.066.
  • Hexcel Corporation. HexPly 8552. Prod. Data Sheet., 2020. [cited 2022 Mar 17]. pp. 1–6. Available from https://www.hexcel.com/user_area/content_media/raw/HexPly_8552_eu_DataSheet.pdf.
  • P. Nali, and E. Carrera, A numerical assessment on two-dimensional failure criteria for composite layered structures, Compos. Part B Eng., vol. 43, no. 2, pp. 280–289, 2012. DOI: 10.1016/j.compositesb.2011.06.018.
  • J. Gu, and P. Chen, Some modifications of Hashin’s failure criteria for unidirectional composite materials, Compos Struct., vol. 182, pp. 143–152, 2017. DOI: 10.1016/j.compstruct.2017.09.011.
  • A. Puck, and H. Schürmann, Failure analysis of FRP laminates by means of physically based phenomenological models *, 2004. pp. 264–297.
  • Z. W. Wang, J. P. Zhao, and X. Zhang, Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria, Mater. Res. Express., vol. 5, 2018. DOI: 10.1088/2053-1591/aacca3.
  • A. M. Gadade, A. Lal, and B. N. Singh, Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings, Aerosp. Sci. Technol., vol. 55, pp. 227–241, 2016. DOI: 10.1016/j.ast.2016.05.001.
  • Q. Sun, G. Zhou, Z. Meng, et al., Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model, Compos. Sci. Technol., vol. 172, pp. 81–95, 2019. DOI: 10.1016/j.compscitech.2019.01.012.
  • R. G. Cuntze, and A. Freund, The predictive capability of failure mode concept-based strength criteria for multidirectional laminates, Compos. Sci. Technol., vol. 64, no. 3–4, pp. 343–377, 2004. DOI: 10.1016/S0266-3538(03)00218-5.
  • B. M. F. Marques, T. P. Z. Marques, A. Silva F de, et al., Failure criteria assessment of carbon/epoxy laminate under tensile loads using finite element method: Validation with experimental tests and fractographic analysis, Mech Adv Mater Struct., vol. 0, pp. 1–10, 2022. DOI: 10.1080/15376494.2022.2029984.
  • S. A. Zachariah, B. S. Shenoy, and K. D. Pai, Comprehensive analysis of in-plane tensile characteristics of thin carbon/aramid hybrid composites using experimental and RVE- based numerical study, Compos. Struct., vol. 271, pp. 114160, 2021. DOI: 10.1016/j.compstruct.2021.114160.
  • S. Adden, and P. Horst, Stiffness degradation under fatigue in multiaxially loaded non-crimped-fabrics, Int. J. Fatigue., vol. 32, no. 1, pp. 108–122, 2010. DOI: 10.1016/j.ijfatigue.2009.02.002.
  • ASTM D3039-17. Standard test method for tensile properties of polymer matrix composite materials. ASTM Int., 2017. 1–13. Available from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Tensile+Properties+of+Polymer+Matrix+Composite+Materials#1.
  • Y. Feng, Y. Huang, and X. Ma, The application of Student’s t -test in internal quality control of clinical laboratory, Front Lab Med., vol. 1, no. 3, pp. 125–128, 2017. DOI: 10.1016/j.flm.2017.09.002.
  • MIL-HDBK-17-3F. Composite Materials Handbook. Polymer Matrix Composites Materials Usage, Design, and Analysis, U.S. DEPARTMENT OF DEFENSE. MIL-HDBK-17-3F - Composite Materials Handbook. Polymer Matrix Composites Materials Usage, Design, and Analysis. vol. 3, 2002.
  • E. Greenhalgh, Failure Analysis and Fractography of Polymer Composites, 1st ed., Woodhead Publishing Limited, Cambridge, 2009.
  • R. Talreja, and C. V. Singh, Damage and Failure of Composite Materials, 1st ed., Cambridge University Press, Cambridge, 2012.
  • C. V. Opelt, G. M. Cândido, and M. C. Rezende, Fractographic study of damage mechanisms in fiber reinforced polymer composites submitted to uniaxial compression, Eng. Fail. Anal., vol. 92, pp. 520–527, 2018. DOI: 10.1016/j.engfailanal.2018.06.009.
  • D. Purslow, Matrix fractography of fibre-reinforced epoxy composites, Composites., vol. 17, no. 4, pp. 289–303, 1986. DOI: 10.1016/0010-4361(86)90746-9.
  • N. Zimmermann, and P. H. Wang, A review of failure modes and fracture analysis of aircraft composite materials, Eng Fail Anal., vol. 115, pp. 104692, 2020. DOI: 10.1016/j.engfailanal.2020.104692.
  • H. Li, Y. Jia, G. Mamtimin, et al., Stress transfer and damage evolution simulations of fiber-reinforced polymer-matrix composites, Mater. Sci. Eng. A., vol. 425, no. 1–2, pp. 178–184, 2006. DOI: 10.1016/j.msea.2006.03.086.
  • S. T. Pinho, P. Robinson, and L. Iannucci, Fracture toughness of the tensile and compressive fibre failure modes in laminated composites, Compos. Sci. Technol., vol. 66, no. 13, pp. 2069–2079, 2006. DOI: 10.1016/j.compscitech.2005.12.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.