144
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear dynamic and stability analysis of soft fluidic robotic system with reduced computational cost

& ORCID Icon
Pages 4862-4881 | Received 22 Oct 2021, Accepted 26 Jul 2022, Published online: 17 Oct 2022

References

  • N. El-Atab, R. B. Mishra, F. Al-modaf, L. Joharji, A. A. Alsharif, H. Alamoudi, M. Diaz, N. Qaiser and M. M. Hussain Soft actuators for soft robotic applications: a review, Adv. Intellig. Syst., vol. 2, no. 10, pp. 2000128–2000137, 2020. DOI: 10.1002/aisy.202000128.
  • L. Blanc, A. Delchambre, and P. Lambert, Flexible medical devices: review of controllable stiffness solutions, Actuators, vol. 6, no. 3, pp. 23–23, 2017. DOI: 10.3390/act6030023.
  • S. Hirose, and H. Yamada, Proc. - IEEE Int. Conf. Robot. Autom., vol. 16, no. 1, pp. 88–98, 2009. DOI: 10.1109/MRA.2009.932130.
  • G. S. Chirikjian, Hyper-redundant manipulator dynamics: a continuum approximation, Adv. Rob., vol. 9, no. 3, pp. 217–243, 1994. DOI: 10.1163/156855395X00175.
  • F. Matsuno, and H. Sato, Trajectory tracking control of snake robots based on dynamic model, Proc. - IEEE Int. Conf. Robot. Autom., pp. 3029–3034, 2005.
  • H. Mochiyama, and T. Suauki, Hyper-flexible robotic manipulators, Proceedings of the IEEE International Symposium on Micro-Nano Mechatronics and Human Science, pp. 41–46, 2005.
  • F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, A 3-D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm, Bioinspir. Biomimet., vol. 7, pp. 21–33, 2012.
  • E. Tatlicioglu, I. D. Walker, and D. M. Dawson, New dynamic models for planar extensible continuum robot manipulators, Proceeding of the IEEE International Conference on Intelligent Robots and Systems, vol. 9, pp. 1485–1490, 2007.
  • T. Zheng, and D. T. Branson, Dynamic continuum arm model for use with underwater robotic manipulators inspired by octopus vulgaris, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 32, 5289–5294, 2012.
  • M. Bamdad and M. M. Bahri, Kinematics and manipulability analysis of a highly articulated soft robotic manipulator, Robotica, vol. 37, no. 5, pp. 868–882, 2019. DOI: 10.1017/S0263574718001376.
  • A. Gravagne, D. Rahn, and D. A. Walker, A vibration damping setpoint controller for continuum robots, Proceedings of the IEEE International Conference on Robotics & Automation, pp. 21–26, 2001.
  • X. Liu, G. Cai, F. Peng, H. Zhang, and L. Lv, Nonlinear vibration analysis of a membrane based on large deflection theory, J. Vib. Control., vol. 24, no. 12, pp. 2418–2429, 2018. DOI: 10.1177/1077546316687924.
  • S. Jeong, and H. H. Yoo, Flexibility modeling of a beam undergoing large deflection using the assumed mode method, Int. J. Mech. Sci., vol. 133, pp. 611–618, 2017. DOI: 10.1016/j.ijmecsci.2017.08.059.
  • Z. Nouri, S. Sarrami-Foroushani, F. Azhari, and M. Azhari, Application of Carrera unified formulation in conjunction with finite strip method in static and stability analysis of functionally graded plates, Mech. Adv. Mater. Struct., vol. 29, no. 2, pp. 250–266, 2022. DOI: 10.1080/15376494.2020.1762265.
  • E. Carrer, A. Pagani, E. Daneshkhah, and X. Xu, Evaluation of geometrically nonlinear terms in the large-deflection and post-buckling analysis of isotropic rectangular plates, Int. J. Non. Linear Mech., vol. 121, pp. 103461, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103461.
  • M. Thieffry, A. Kruszewski, C. Duriez, and T. Guerra, Control design for soft robots based on reduced order model, IEEE Robot. Autom. Lett., vol. 4, pp. 1–1, 2018. DOI: 10.1109/LRA.2018.2876734.
  • S. Sadati, S. E. Naghibi, A. Shiva, B. Michael, L. Renson, M. Howard, C. D. Rucker, K . Althoefer, T. Nanayakkara, S. Zschaler, C. Bergeles, H. Hauser, and I. D. Walker, TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models, The International Journal of Robotics Research., vol. 40, no. 1, pp. 296–347, 2021. DOI: 10.1177/0278364919881685.
  • S. Sadati, S. E. Naghibi, A. Shiva, I. D. Walker, K. Althoefer, and T. Nanayakkara, Mechanics of continuum manipulators, a comparative study of five methods with experiments, Towards Autonom. Robot. Syst., vol. 10454, pp. 686–702, 2017.
  • B. A. Jones, and I. D. Walke, Kinematics for multi-section continuum robots, IEEE Trans. Robot., vol. 22, no. 1, pp. 43–55, 2006. DOI: 10.1109/TRO.2005.861458.
  • Y. Tiana, Q. Zhanga, D. Caib, C. Chenc, J. Zhang, and W. Duana, Theoretical modelling of soft robotic gripper with bioinspired fibrillar adhesives, Mech. Adv. Mater. Struct., vol. 20, pp. 1–17, 2020.
  • M. Gazzola, L. H. Dudte, A. G. Mccormick, and L. Mahadevan, Forward and inverse problems in the mechanics of soft filaments, R Soc. Open Sci., vol. 5, no. 6, pp. 171628, 2018. DOI: 10.1098/rsos.171628.
  • B. Gamus, L. Salem, E. Ben-Haim, A. D. Gat, and Y. Or, Interaction between inertia, viscosity, and elasticity in soft robotic actuator with fluidic network, IEEE Trans. Robot., vol. 34, no. 1, pp. 81–90, 2018. DOI: 10.1109/TRO.2017.2765679.
  • P. Breitman, Y. Matia, and A. D. Gat, Fluid mechanics of pneumatic soft robots, Soft Rob., vol. 8, no. 5, pp. 519–530, 2021. DOI: 10.1089/soro.2020.0037.
  • B. Gamus, L. Salem, A. D. Gat, and Y. Or, Understanding inchworm crawling for soft-robotics, IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1397–1404, 2020. DOI: 10.1109/LRA.2020.2966407.
  • G. Kerschen, A. F. Vakakis, Y. S. Le, D. M. Mcfarland, and L. A. Bergman, Nonlinear targeted energy transfer in mechanical and structural systems, Solid Mech. Appl., vol. 156, 2009.
  • Von Groll, and G. Ewins, D. J., The harmonic balance method with arc-length continuation in rotor/stator contact problems, J. Sound Vib., vol. 241, no. 2, pp. 223–233, 2001. DOI: 10.1006/jsvi.2000.3298.
  • T. Helps, and J. Rossiter, Proprioceptive flexible fluidic actuators using conductive working fluids, Soft Robot., vol. 5, no. 2, pp. 175–189, 2018. DOI: 10.1089/soro.2017.0012.
  • A. D. Marchese, R. Katzschmann, and D. Rus, A recipe for soft fluidic elastomer robots, Soft Robot., vol. 2, no. 1, pp. 7–25, 2015. DOI: 10.1089/soro.2014.0022.
  • J. Wang, J. Min, Y. Fei, and W. Pang, Study on nonlinear crawling locomotion of modular differential drive soft robot, Nonlinear Dyn., vol. 97, no. 2, pp. 1107–1123, 2019. DOI: 10.1007/s11071-019-05035-0.
  • M. Bamdad, and M. Feyzollahzadeh, Computational efficient discrete time transfer matrix method for large deformation analysis of flexible manipulators., Mech. Based Des. Struct. Mach., pp. 1–23, 2020.
  • T. Zhang, H. Ouyang, Y. O. Zhang, and B. L. Lv, Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses, Appl. Math. Modell., vol. 40, no. 17-18, pp. 7880–7900, 2016. DOI: 10.1016/j.apm.2016.03.050.
  • A. Koochi, H. Hosseini, and M. Abadyan, Nonlinear beam formulation incorporating surface energy and size effect: application in nano-bridges, Appl. Math. Mech-Engl. Ed., vol. 37, no. 5, pp. 583–600, 2016. DOI: 10.1007/s10483-016-2073-8.
  • A. R. Ghasemi, and M. Mohandes, Nonlinear free vibration of laminated composite Euler-beams based on finite strain using GDQM, Mech. Adv. Mater. Struct., vol. 24, no. 11, pp. 917–923, 2017. DOI: 10.1080/15376494.2016.1196794.
  • R. Pal, Teaching fluid mechanics and thermodynamics simultaneously through pipeline flow experiments, Fluids, vol. 4, no. 2, pp. 103–115, 2019. DOI: 10.3390/fluids4020103.
  • V. Azadi, and S. Khajehpour, Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers, Lat. Am. J. Solids Struct., vol. 12, no. 6, 1042–1060, 2015. DOI: 10.1590/1679-78251535.
  • M. Mosayebi, M. Ghauour, and M. J. Sadigh, A nonlinear high gain observer based input–output control of flexible link manipulator, Mech. Res. Commun., vol. 45, pp. 34–41, 2012. DOI: 10.1016/j.mechrescom.2012.06.004.
  • M. Bamdad, Analytical dynamic solution of a flexible cable-suspended manipulator, Front. Mech. Eng., vol. 8, no. 4, pp. 350–359, 2013. DOI: 10.1007/s11465-013-0271-9.
  • M. Krack, L. Panning-von Scheidt, and J. Wallaschek, On the computation of the slow dynamics of nonlinear modes of mechanical systems, Mech. Syst. Sig. Process., vol. 42, no. 1-2, pp. 71–87, 2014. DOI: 10.1016/j.ymssp.2013.08.031.
  • L. Eugene, and K. Georg, 1990. Introduction to Numerical Continuation Methods, SIAM's Classics in Applied Mathematics.
  • A. Salimi, A. Kalhor, and M. Masouleh, A new development of homotopy continuation method, applied in solving nonlinear kinematic system of equations of parallel mechanisms, RSI Int. Conf. Robot. Mechatron., 2015. DOI: 10.1109/ICRoM.2015.7367874.
  • F. Liang, X. Yang, W. Zhang, Y. QIan, and R. Melnik, Parametric vibration analysis of pipes conveying fluid by nonlinear normal modes and a numerical iterative approach, AAMM., vol. 11, no. 1, pp. 38–52, 2019. DOI: 10.4208/aamm.OA-2018-0064.
  • L. Manevitch, The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables, Nonlinear Dyn., vol. 25, no. 1/3, pp. 95–109, 2001. DOI: 10.1023/A:1012994430793.
  • H. E. Daou, T. Salum, T. Chambers, W. M. Megill, and M. Kruusmaa, Modelling of a biologically inspired robotic fish driven by compliant parts, Bioinspir. Biomim., vol. 9, no. 1, pp. 016010–016014, 2014. DOI: 10.1088/1748-3182/9/1/016010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.