241
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastic fracture analysis in orthotropic media using optimized element free Galerkin algorithm

&
Pages 271-296 | Received 16 Mar 2022, Accepted 12 Aug 2022, Published online: 25 Aug 2022

References

  • N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff. Groningen., vol. 17404, no. 6.2, pp. 52–84, 1963.
  • S. G. Lekhnitskii, P. Fern, J. J. Brandstatter, and E. H. Dill, Theory of elasticity of an anisotropic elastic body, Phys. Today., vol. 17, no. 1, pp. 84–84, 1964. DOI: 10.1063/1.3051394.
  • G. C. Sih, P. C. Paris, and G. R. Irwin, On cracks in rectilinearly anisotropic bodies, Int J Fract., vol. 1, no. 3, pp. 189–203, 1965. DOI: 10.1007/BF00186854.
  • O. L. Bowie, and C. E. Freese, Central crack in plane orthotropic rectangular sheet, Int J Fract., vol. 8, no. 1, pp. 49–57, 1972. DOI: 10.1007/BF00185197.
  • M. C. Kuo, and D. B. Bogy, Plane solutions for the displacement and traction-displacement problems for anisotropic elastic wedges, Am. Soc. Mech. Eng., vol. 41, no. 1, pp. 197–202, 1974. DOI: 10.1115/1.3423223.
  • E. Viola, A. Piva, and E. Radi, Crack propagation in an orthotropic medium under general loading, Eng. Fract. Mech., vol. 34, no. 5–6, pp. 1155–1174, 1989. DOI: 10.1016/0013-7944(89)90277-4.
  • W. K. Lim, S. Y. Choi, and B. V. Sankar, Biaxial load effects on crack extension in anisotropic solids, Eng. Fract. Mech., vol. 68, no. 4, pp. 403–416, 2001. DOI: 10.1016/S0013-7944(00)00103-X.
  • L. Nobile, and C. Carloni, Fracture analysis for orthotropic cracked plates, Compos. Struct., vol. 68, no. 3, pp. 285–293, May 2005. DOI: 10.1016/j.compstruct.2004.03.020.
  • D. M. Barnett, and R. J. Asaro, The fracture mechanics of slit-like cracks in anisotropic elastic media, J. Mech. Phys. Solids., vol. 20, no. 6, pp. 353–366, 1972. DOI: 10.1016/0022-5096(72)90013-0.
  • S. N. Atluri, A. S. Kobayashi, and M. Nakagaki, Finite element program for fracture mechanics analysis of composite material, Fract. Mech. Comp. ASTM Int., vol. D40, pp. 86–98, 1975. DOI: 10.1520/STP34793S.
  • M. H. Aliabadi, and P. Sollero, Crack growth analysis in homogeneous orthotropic laminates, Compos. Sci. Technol., vol. 58, no. 10, pp. 1697–1703, 1998. DOI: 10.1016/S0266-3538(97)00240-6.
  • J.-H. Kim, and G. H. Paulino, Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method, Eng. Fract.Mech., vol. 69, no. 14-16, pp. 1557–1586, 2002. DOI: 10.1016/S0013-7944(02)00057-7.
  • A. Asadpoure, S. Mohammadi, and A. Vafai, Modeling crack in orthotropic media using a coupled finite element and partition of unity methods, Finite Elem. Anal. Des., vol. 42, no. 13, pp. 1165–1175, Sep. 2006. DOI: 10.1016/j.finel.2006.05.001.
  • A. Asadpoure, S. Mohammadi, and A. Vafai, Crack analysis in orthotropic media using the extended finite element method, Thin-Walled Struct., vol. 44, no. 9, pp. 1031–1038, Sep. 2006. DOI: 10.1016/j.tws.2006.07.007.
  • A. Asadpoure, and S. Mohammadi, Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method, Int. J. Numer. Meth. Eng., vol. 69, no. 10, pp. 2150–2172, 2007. DOI: 10.1002/nme.1839.
  • D. Motamedi, and S. Mohammadi, Dynamic crack propagation analysis of orthotropic media by the extended finite element method, Int J Fract., vol. 161, no. 1, pp. 21–39, 2010. DOI: 10.1007/s10704-009-9423-7.
  • D. Motamedi, and S. Mohammadi, Dynamic analysis of fixed cracks in composites by the extended finite element method, Eng. Fract. Mech., vol. 77, no. 17, pp. 3373–3393, Nov. 2010. DOI: 10.1016/j.engfracmech.2010.08.011.
  • T. Belytschko, Y. Y. Lu, and L. Gu, Element free Galerkin methods, Int. J. Numer. Meth. Eng., vol. 37, no. 2, pp. 229–256, 1994. DOI: 10.1002/nme.1620370205.
  • T. Belytschko, L. Gu, and Y. Y. Lu, Fracture and crack growth by element free Galerkin methods, Model. Simul. Mater. Sci. Eng., vol. 2, no. 3A, pp. 519–534, 1994. DOI: 10.1088/0965-0393/2/3A/007.
  • T. Belytschko, Y. Y. Lu, L. Gu, and M. Tabbara, Element-free galerkin methods for static and dynamic fracture, Int. J. Solids Struct., vol. 32, no. 17–18, pp. 2547–2570, 1995. DOI: 10.1016/0020-7683(94)00282-2.
  • J. S. Chen, and H. P. Wang, New boundary condition treatments in meshfree computation of contact problems, Comput. Methods Appl. Mech. Eng., vol. 187, no. 3–4, pp. 441–468, 2000. DOI: 10.1016/S0045-7825(00)80004-3.
  • L. Xuan, Meshless element-free Galerkin method in NDT applications, AIP Conf. Proc., vol. 2003, pp. 1960–1967, 1960. vol DOI: 10.1063/1.1473033.
  • M. Li, E. Werner, and J. H. You, Influence of heat flux loading patterns on the surface cracking features of tungsten armor under ELM-like thermal shocks, J. Nucl. Mater., vol. 457, pp. 256–265, 2015. DOI: 10.1016/j.jnucmat.2014.11.026.
  • A. Awasthi, and M. Pant, A revamped element-free galerkin algorithm for accelerated simulation of fracture and fatigue problems in two-dimensional domains, Iran. J. Sci. Technol. Trans. Mech. Eng., 2022. DOI: 10.1007/s40997-021-00471-z.
  • I. V. Singh, K. Sandeep, and R. Prakash, Heat transfer analysis of two-dimensional fins using meshless element free Galerkin method, Numer. Heat Transf. Part A Appl., vol. 44, no. 1, pp. 73–84, 2003. DOI: 10.1080/713838174.
  • H. Pathak, A. Singh, and I. V. Singh, Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method, Appl. Math. Model., vol. 38, no. 13, pp. 3093–3123, 2014. DOI: 10.1016/j.apm.2013.11.030.
  • S. Garg, and M. Pant, Numerical simulation of thermal fracture in functionally graded materials using element-free Galerkin method, Sadhana Acad. Proc. Eng. Sci., vol. 42, no. 3, pp. 417–431, Mar 2017. DOI: 10.1007/s12046-017-0612-1.
  • V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, Meshless methods: A review and computer implementation aspects, Math. Comput. Simul., vol. 79, no. 3, pp. 763–813, 2008. DOI: 10.1016/j.matcom.2008.01.003.
  • M. Pant, I. V. Singh, and B. K. Mishra, Numerical simulation of thermo-elastic fracture problems using element free Galerkin method, Int. J. Mech. Sci., vol. 52, no. 12, pp. 1745–1755, Dec. 2010. DOI: 10.1016/j.ijmecsci.2010.09.008.
  • M. Pant, I. V. Singh, and B. K. Mishra, A numerical study of crack interactions under thermo-mechanical load using EFGM, J Mech Sci Technol., vol. 25, no. 2, pp. 403–413, 2011. DOI: 10.1007/s12206-010-1217-3.
  • H. Pathak, A. Singh, and I. V. Singh, Numerical simulation of bi-material interfacial cracks using EFGM and XFEM, Int J Mech Mater Des., vol. 8, no. 1, pp. 9–36, Mar. 2012. DOI: 10.1007/s10999-011-9173-3.
  • M. Pant, and S. Bhattacharya, Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM, Int. J. Comput. Methods., vol. 14, no. 1, pp. 1750004, Feb. 2017. DOI: 10.1142/S0219876217500049.
  • H. Salari-Rad, M. Rahimi-Dizadji, S. Rahimi-Pour, and M. Delforouzi, Meshless EFG simulation of linear elastic fracture propagation under various loadings, Arab J Sci Eng., vol. 36, no. 7, pp. 1381–1392, Nov. 2011. DOI: 10.1007/s13369-011-0125-x.
  • S. Garg, and M. Pant, Numerical simulation of thermal fracture in coatings using element free galerkin method, Indian J. Eng. Mater. Sci., vol. 25, no. 3, pp. 217–232, 2018.
  • M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int. J. Numer. Meth. Engng., vol. 74, no. 5, pp. 827–847, 2008. DOI: 10.1002/nme.2197.
  • S. S. Hosseini, H. Bayesteh, and S. Mohammadi, Thermo-mechanical XFEM crack propagation analysis of functionally graded materials, Mater. Sci. Eng. A., vol. 561, pp. 285–302, 2013. DOI: 10.1016/j.msea.2012.10.043.
  • L. Bouhala, A. Makradi, and S. Belouettar, Thermal and thermo-mechanical influence on crack propagation using an extended mesh free method, Eng. Fract. Mech., vol. 88, pp. 35–48, Jul 2012. DOI: 10.1016/j.engfracmech.2012.04.001.
  • S. Garg, and M. Pant, Numerical simulation of adiabatic and isothermal cracks in functionally graded materials using optimized element-free Galerkin method, J. Therm. Stress., vol. 40, no. 7, pp. 846–865, Jul 2017. DOI: 10.1080/01495739.2017.1287534.
  • S. Kosaraju, V. G. Anne, and B. B. Popuri, Taguchi analysis on cutting forces and temperature in turning titanium Ti-6Al-4V, Int. J. Mech. Ind. Eng., vol. 2, no. 1, pp. 59–63, 2012. DOI: 10.47893/ijmie.2012.1068.
  • S. S. Mahapatra, and A. Patnaik, Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method, Int J Adv Manuf Technol., vol. 34, no. 9-10, pp. 911–925, 2007. DOI: 10.1007/s00170-006-0672-6.
  • P. Lancaster, and K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comp., vol. 37, no. 155, pp. 141–158, 1981. DOI: 10.1090/S0025-5718-1981-0616367-1.
  • B. N. Rao, and S. Rahman, Mesh-free analysis of cracks in isotropic functionally graded materials, Eng. Fract. Mech., vol. 70, no. 1, pp. 1–27, 2003. DOI: 10.1016/S0013-7944(02)00038-3.
  • H. Jia, Y. Nie, and J. Li, Fracture analysis in orthotropic thermoelasticity using extended finite element method, Adv. Appl. Math. Mech., vol. 7, no. 6, pp. 780–795, Dec. 2015. DOI: 10.4208/aamm.2014.m627.
  • H. Wang, Y. Liu, P. Yang, R. Wu, and Y. He, Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method, Appl. Therm. Eng., vol. 103, pp. 128–138, 2016. DOI: 10.1016/j.applthermaleng.2016.03.033.
  • M. P. Elizalde-González, and L. E. García-Díaz, Application of a Taguchi L16 orthogonal array for optimizing the removal of acid orange 8 using carbon with a low specific surface area, Chem. Eng. J., vol. 163, no. 1–2, pp. 55–61, 2010. DOI: 10.1016/j.cej.2010.07.040.
  • S. S. Ghorashi, S. Mohammadi, and S. R. Sabbagh-Yazdi, Orthotropic enriched element free Galerkin method for fracture analysis of composites, Eng. Fract. Mech., vol. 78, no. 9, pp. 1906–1927, Jun. 2011. DOI: 10.1016/j.engfracmech.2011.03.011.
  • L. Bouhala, A. Makradi, and S. Belouettar, Thermo-anisotropic crack propagation by XFEM, Int. J. Mech. Sci., vol. 103, pp. 235–246, Nov2015. DOI: 10.1016/j.ijmecsci.2015.09.014.
  • I. Pasternak, Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity, Eng. Anal. Bound. Elem., vol. 36, no. 12, pp. 1931–1941, 2012. DOI: 10.1016/j.enganabound.2012.07.007.
  • Y. C. Shiah, and C. L. Tan, Fracture mechanics analysis in 2-D anisotropic thermoelasticity using BEM, C. Comput. Model. Eng. Sci., vol. 1, no. 3, pp. 91–99, 2000. DOI: 10.3970/cmes.2000.001.393.
  • S. Xing, P. Dong, and A. Threstha, Analysis of fatigue failure mode transition in load-carrying fillet-welded connections, Mar. Struct., vol. 46, pp. 102–126, 2016. DOI: 10.1016/j.marstruc.2016.01.001.
  • T. Nykänen, X. Li, T. Björk, and G. Marquis, A parametric fracture mechanics study of welded joints with toe cracks and lack of penetration, Eng. Fract. Mech., vol. 72, no. 10, pp. 1580–1609, 2005. DOI: 10.1016/j.engfracmech.2004.11.004.
  • W. Song, X. Liu, and F. Bertob, Low and high cycle fatigue assessment of mismatched load-carrying cruciform joints, Procedia Struct. Integr., vol. 13, pp. 2227–2232, 2018. DOI: 10.1016/j.prostr.2018.12.136.
  • R. Ghafoori-Ahangar, and Y. Verreman, Fatigue behavior of load-carrying cruciform joints with partial penetration fillet welds under three-point bending, Eng. Fract. Mech., vol. 215, pp. 211–223, 2019. DOI: 10.1016/j.engfracmech.2019.05.015.
  • R. Singh, Stress analysis of orthotropic and isotropic connecting rod using finite element method, Int. J. Mech. Eng., vol. 2, no. 2, pp. 91–100, 2013.
  • S. Chougale, Thermal and structural analysis of connecting rod of an IC engine, J. Emerg. Technol. Innov. Res., vol. 4, no. 6, pp. 209–215, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.