166
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Free radial oscillations of an actuated cylindrical tube

ORCID Icon, ORCID Icon &
Pages 332-342 | Received 31 Mar 2022, Accepted 13 Aug 2022, Published online: 25 Aug 2022

References

  • L. Dorfmann, and R. W. Ogden, Nonlinear electroelasticity: material properties, continuum theory and applications, Proc. R. Soc. A., vol. 473, no. 2204, pp. 20170311–20170334, 2017. DOI: 10.1098/rspa.2017.0311.
  • C. Truesdell, and W. Noll, The Non-Linear Field Theories of Mechanics, Springer, Berlin, Heidelberg, pp. 1–579, 2004.
  • R. W. Ogden, Non-Linear Elastic Deformations, Ellis Harwood Ltd., Chichester, England, 1984.
  • R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation, Sensors Actuators A: Phys., vol. 64, no. 1, pp. 77–85, 1998. DOI: 10.1016/S0924-4247(97)01657-9.
  • M. Wissler, and E. Mazza, Electromechanical coupling in dielectric elastomer actuators, Sensors and Actuators A: Physical., vol. 138, no. 2, pp. 384–393, 2007. DOI: 10.1016/j.sna.2007.05.029.
  • D. Kumar, and S. Sarangi, Electro-magnetostriction under large deformation: modeling with experimental validation, Mech. Mater., vol. 128, pp. 1–10, 2019. DOI: 10.1016/j.mechmat.2018.10.001.
  • D. L. Henann, S. A. Chester, and K. Bertoldi, Modeling of dielectric elastomers: Design of actuators and energy harvesting devices, J. Mech. Phys. Solids, vol. 61, no. 10, pp. 2047–2066, 2013. DOI: 10.1016/j.jmps.2013.05.003.
  • A. I. Al-Kalbani, M. R. Yuce, and J.-M. Redouté, A biosafety comparison between capacitive and inductive coupling in biomedical implants, Antennas Wirel. Propag. Lett., vol. 13, pp. 1168–1171, 2014. DOI: 10.1109/LAWP.2014.2328375.
  • D. Kumar, S. Ghosh, S. Roy, and S. Santapuri, Modeling and analysis of an electro-pneumatic braided muscle actuator, J. Intell. Mater. Syst. Struct., vol. 32, no. 4, pp. 399–409, 2021. DOI: 10.1177/1045389X20953624.
  • F. Carpi, and D. De Rossi, Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation, Mater. Sci. Eng. C, vol. 24, no. 4, pp. 555–562, 2004. DOI: 10.1016/j.msec.2004.02.005.
  • F. Carpi, A. Migliore, G. Serra, and D. De Rossi, Helical dielectric elastomer actuators, Smart Mater. Struct., vol. 14, no. 6, pp. 1210–1216, 2005. DOI: 10.1088/0964-1726/14/6/014.
  • J. K. Knowles, Large amplitude oscillations of a tube of incompressible elastic material, Q. Appl. Math., vol. 18, no. 1, pp. 71–77, 1960. DOI: 10.1090/qam/112336.
  • J. K. Knowles, On a class of oscillations in the finite-deformation theory of elasticity, J. Appl. Mech., vol. 29, no. 2, pp. 283–286, 1962. DOI: 10.1115/1.3640542.
  • M. F. Beatty, On the radial oscillations of incompressible, isotropic, elastic and limited elastic thick-walled tubes, Int. J. Non-Linear Mech., vol. 42, no. 2, pp. 283–297, 2007. DOI: 10.1016/j.ijnonlinmec.2006.10.007.
  • A. Gent, A new constitutive relation for rubber, Rubber Chem. Technol., vol. 69, no. 1, pp. 59–61, 1996. DOI: 10.5254/1.3538357.
  • C. O. Horgan, The remarkable Gent constitutive model for hyperelastic materials, Int. J. Non-Linear Mech., vol. 68, pp. 9–16, 2015. DOI: 10.1016/j.ijnonlinmec.2014.05.010.
  • G. Puglisi, and G. Saccomandi, The Gent model for rubber-like materials: an appraisal for an ingenious and simple idea, Int. J. Non-Linear Mech., vol. 68, pp. 17–24, 2015. DOI: 10.1016/j.ijnonlinmec.2014.05.007.
  • S. Son, and N. Goulbourne, Dynamic response of tubular dielectric elastomer transducers, Int. J. Solids Struct., vol. 47, no. 20, pp. 2672–2679, 2010. DOI: 10.1016/j.ijsolstr.2010.05.019.
  • G. Shmuel, and G. deBotton, Axisymmetric wave propagation in finitely deformed dielectric elastomer tubes, Proc. R. Soc. A, vol. 469, no. 2155, pp. 20130071–20130016, 2013. DOI: 10.1098/rspa.2013.0071.
  • E. Bortot, Nonlinear dynamic response of soft thick-walled electro-active tubes, Smart Mater. Struct., vol. 27, no. 10, pp. 105025–105029, 2018. DOI: 10.1088/1361-665X/aadbce.
  • J. Zhu, S. Cai, and Z. Suo, Nonlinear oscillation of a dielectric elastomer balloon, Polym. Int., vol. 59, no. 3, pp. 378–383, 2010. DOI: 10.1002/pi.2767.
  • H. Yong, X. He, and Y. Zhou, Dynamics of a thick-walled dielectric elastomer spherical shell, Int. J. Eng. Sci., vol. 49, no. 8, pp. 792–800, 2011. DOI: 10.1016/j.ijengsci.2011.03.006.
  • F. Brozovich, C. Nicholson, C. Degen, Y. Z. Gao, M. Aggarwal, and K. G. Morgan, Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders, Pharmacol. Rev., vol. 68, no. 2, pp. 476–532, 2016. DOI: 10.1124/pr.115.010652.
  • A. P. Burke, F. D. Kolodgie, A. Farb, D. Weber, and R. Virmani, Morphological predictors of arterial remodeling in coronary atherosclerosis, Circulation, vol. 105, no. 3, pp. 297–303, 2002. DOI: 10.1161/hc0302.102610.
  • C. Hahn, and M. A. Schwartz, Mechanotransduction in vascular physiology and atherogenesis, Nat. Rev. Mol. Cell. Biol., vol. 10, no. 1, pp. 53–62, 2009. DOI: 10.1038/nrm2596.
  • J. D. Humphrey, Mechanisms of vascular remodeling in hypertension, Am J Hypertens., vol. 34, no. 5, pp. 432–441, 2021. DOI: 10.1093/ajh/hpaa195.
  • J. Wang, et al., A survey of the development of biomimetic intelligence and robotics, Biomimetic Intell. Robot., vol. 1, pp. 100001, 2021. DOI: 10.1016/j.birob.2021.100001.
  • H. Shin, S. Jo, and A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials., vol. 24, no. 24, pp. 4353–4364, 2003. DOI: 10.1016/S0142-9612(03)00339-9.
  • W. Liu, and C. Rahn, Fiber-reinforced membrane models of mckibben actuators, J. Appl. Mech., vol. 70, no. 6, pp. 853–859, 2003. DOI: 10.1115/1.1630812.
  • I.-S. Liu, A note on the Mooney–Rivlin material model, Continuum Mech. Thermodyn., vol. 24, no. 4-6, pp. 583–590, 2012. DOI: 10.1007/s00161-011-0197-6.
  • A. Dorfmann, and R. W. Ogden, Nonlinear electroelasticity, Acta Mech., vol. 174, no. 3-4, pp. 167–183, 2005. DOI: 10.1007/s00707-004-0202-2.
  • M. F. Beatty, On constitutive models for limited elastic, molecular based materials, Math. Mech. Solids, vol. 13, no. 5, pp. 375–387, 2008. DOI: 10.1177/1081286507076405.
  • N. L. Sehgel, S. F. Vatner, and G. A. Meininger, smooth muscle cell stiffness syndrome”–revisiting the structural basis of arterial stiffness, Front Physiol., vol. 6, pp. 335–315, 2015. DOI: 10.3389/fphys.2015.00335.
  • A. Kovetz, Electromagnetic Theory, Oxford University Press, Oxford, Vol. 975, 2000.
  • J. Humphrey, and S. Na, Elastodynamics and arterial wall stress, Ann. Biomed. Eng., vol. 30, no. 4, pp. 509–523, 2002. DOI: 10.1114/1.1467676.
  • D. Kumar, and S. Sarangi, Instability analysis of an electro-magneto-elastic actuator: A continuum mechanics approach, AIP Adv., vol. 8, no. 11, pp. 115314–115312, 2018. DOI: 10.1063/1.5055793.
  • K. Arya, and S. Sarangi, Effect of damage on the free radial oscillations of an incompressible isotropic tube, Math. Mech. Solids, vol. 23, no. 8, pp. 1177–1205, 2018. DOI: 10.1177/1081286517712076.
  • P. B. Dobrin, and A. A. Rovick, Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries, Am. J. Physiol., vol. 217, no. 6, pp. 1644–1651, 1969. DOI: 10.1152/ajplegacy.1969.217.6.1644.
  • R. H. Cox, Arterial wall mechanics and composition and the effects of smooth muscle activation, Am. J. Physiol., vol. 229, no. 3, pp. 807–812, 1975. DOI: 10.1152/ajplegacy.1975.229.3.807.
  • T. Matsumoto, M. Tsuchida, and M. Sato, Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxation, Am. J. Physiol., vol. 271, no. 4 Pt 2, pp. H1711–H1716, 1996. DOI: 10.1152/ajpheart.1996.271.4.H1711.
  • M. A. Zulliger, A. Rachev, and N. Stergiopulos, A constitutive formulation of arterial mechanics including vascular smooth muscle tone, Am. J. Physiol. Heart Circ. Physiol., vol. 287, no. 3, pp. H1335–H1343, 2004. DOI: 10.1152/ajpheart.00094.2004.
  • K. Arya, and S. Sarangi, The effect of damage on small-amplitude radial oscillations of an incompressible isotropic tube under pressure, Eur. J. Mech. A/Solids, vol. 68, pp. 25–37, 2018. DOI: 10.1016/j.euromechsol.2017.11.002.
  • G. A. Holzapfel, and T. C. Gasser, Computational stress-deformation analysis of arterial walls including high-pressure response, Int. J. Cardiol., vol. 116, no. 1, pp. 78–85, 2007. DOI: 10.1016/j.ijcard.2006.03.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.