240
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Locking-free isogeometric Timoshenko–Ehrenfest beam formulations for geometrically nonlinear analysis of planar beam structures

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 356-377 | Received 02 May 2022, Accepted 12 Aug 2022, Published online: 13 Sep 2022

References

  • T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., vol. 194, no. 39-41, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • S. P. Timoshenko, Strength of materials. Part 1: Elementary Theory and Problems, Van Nostrand Company Inc., New York, 1958.
  • R. Bouclier, T. Elguedj, and A. Combescure, Locking free isogeometric formulations of curved thick beams, Comput. Methods Appl. Mech. Eng., vol. 245-246, pp. 144–162, 2012. DOI: 10.1016/j.cma.2012.06.008.
  • C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements, part I: Beams, Comput. Methods Appl. Mech. Eng., vol. 279, pp. 1–28, 2014. DOI: 10.1016/j.cma.2014.06.023.
  • A. Cazzani, M. Malagù, and E. Turco, Isogeometric analysis of plane-curved beams, Math. Mech. Solids, vol. 21, no. 5, pp. 562–577, 2016. DOI: 10.1177/1081286514531265.
  • A. Cazzani, M. Malagù, E. Turco, and F. Stochino, Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math. Mech. Solids, vol. 21, no. 2, pp. 182–209, 2016. DOI: 10.1177/1081286515577043.
  • J. Kiendl, F. Auricchio, T. J. R. Hughes, and A. Reali, Single-variable formulations and isogeometric discretizations for shear deformable beams, Comput. Methods Appl. Mech. Eng., vol. 284, pp. 988–1004, 2015. DOI: 10.1016/j.cma.2014.11.011.
  • P. Hu, Q. Hu, and Y. Xia, Order reduction method for locking free isogeometric analysis of Timoshenko beams, Comput. Methods Appl. Mech. Eng., vol. 308, pp. 1–22, 2016. DOI: 10.1016/j.cma.2016.05.010.
  • D. Vo, X. Li, P. Nanakorn, and T. Q. Bui, An efficient isogeometric beam formulation for analysis of 2D non-prismatic beams, Eur. J. Mech. A Solids, vol. 89, pp. 104280, 2021. DOI: 10.1016/j.euromechsol.2021.104280.
  • A.-T. Luu, and J. Lee, Non-linear buckling of elliptical curved beams, Int. J. Non. Linear Mech., vol. 82, pp. 132–143, 2016. DOI: 10.1016/j.ijnonlinmec.2016.02.001.
  • S. F. Hosseini, A. Hashemian, B. Moetakef-Imani, and S. Hadidimoud, Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations, Acta Mech. Sin., vol. 34, no. 4, pp. 728–743, 2018. DOI: 10.1007/s10409-018-0753-4.
  • D. Vo, and P. Nanakorn, A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of planar curved beams, Acta Mech., vol. 231, no. 7, pp. 2827–2847, 2020. DOI: 10.1007/s00707-020-02675-x.
  • G. Zhang, R. Alberdi, and K. Khandelwal, Analysis of three-dimensional curved beams using isogeometric approach, Eng. Struct., vol. 117, pp. 560–574, 2016. DOI: 10.1016/j.engstruct.2016.03.035.
  • A. Tasora, S. Benatti, D. Mangoni, and R. Garziera, A geometrically exact isogeometric beam for large displacements and contacts, Comput. Methods Appl. Mech. Eng., vol. 358, pp. 112635, 2020. DOI: 10.1016/j.cma.2019.112635.
  • F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina, and A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Eng., vol. 263, pp. 113–126, 2013. DOI: 10.1016/j.cma.2013.03.009.
  • O. Weeger, S.-K. Yeung, and M. L. Dunn, Isogeometric collocation methods for cosserat rods and rod structures, Comput. Methods Appl. Mech. Eng., vol. 316, pp. 100–122, 2017. DOI: 10.1016/j.cma.2016.05.009.
  • E. Marino, Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature, Comput. Methods Appl. Mech. Eng., vol. 324, pp. 546–572, 2017. DOI: 10.1016/j.cma.2017.06.031.
  • D. Vo, P. Nanakorn, and T. Q. Bui, A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures, Acta Mech., vol. 231, no. 9, pp. 3673–3701, 2020. DOI: 10.1007/s00707-020-02723-6.
  • Z. Huang, Z. He, W. Jiang, H. Qiao, and H. Wang, Isogeometric analysis of the nonlinear deformation of planar flexible beams with snap-back, Acta Mech. Solid Sin., vol. 29, no. 4, pp. 379–390, 2016. DOI: 10.1016/S0894-9166(16)30241-5.
  • A. Borković, S. Kovačević, G. Radenković, S. Milovanović, and M. Guzijan-Dilber, Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli–Euler beam, Comput. Methods Appl. Mech. Eng., vol. 334, pp. 238–267, 2018. DOI: 10.1016/j.cma.2018.02.002.
  • E. Dvořáková, and B. Patzák, Isogeometric Bernoulli beam element with an exact representation of concentrated loadings, Comput. Methods Appl. Mech. Eng., vol. 361, pp. 112745, 2020. DOI: 10.1016/j.cma.2019.112745.
  • D. Vo, and P. Nanakorn, Geometrically nonlinear multi-patch isogeometric analysis of planar curved Euler–Bernoulli beams, Comput. Methods Appl. Mech. Eng., vol. 366, pp. 113078, 2020. DOI: 10.1016/j.cma.2020.113078.
  • D. Vo, A. Borković, P. Nanakorn, and T. Q. Bui, Dynamic multi-patch isogeometric analysis of planar Euler–Bernoulli beams, Comput. Methods Appl. Mech. Eng., vol. 372, pp. 113435, 2020. DOI: 10.1016/j.cma.2020.113435.
  • S. B. Raknes, X. Deng, Y. Bazilevs, D. J. Benson, K. M. Mathisen, and T. Kvamsdal, Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells, Comput. Methods Appl. Mech. Eng., vol. 263, pp. 127–143, 2013. DOI: 10.1016/j.cma.2013.05.005.
  • L. Greco, and M. Cuomo, B-spline interpolation of Kirchhoff-Love space rods, Comput. Methods Appl. Mech. Eng., vol. 256, pp. 251–269, 2013. DOI: 10.1016/j.cma.2012.11.017.
  • A. M. Bauer, M. Breitenberger, B. Philipp, R. Wüchner, and K. U. Bletzinger, Nonlinear isogeometric spatial Bernoulli beam, Comput. Methods Appl. Mech. Eng., vol. 303, pp. 101–127, 2016. DOI: 10.1016/j.cma.2015.12.027.
  • G. Radenković, and A. Borković, Linear static isogeometric analysis of an arbitrarily curved spatial Bernoulli–Euler beam, Comput. Methods Appl. Mech. Eng., vol. 341, pp. 360–396, 2018. DOI: 10.1016/j.cma.2018.07.010.
  • A. M. Bauer, R. Wüchner, and K. U. Bletzinger, Weak coupling of nonlinear isogeometric spatial Bernoulli beams, Comput. Methods Appl. Mech. Eng., vol. 361, pp. 112747, 2020. DOI: 10.1016/j.cma.2019.112747.
  • D. Vo, P. Nanakorn, and T. Q. Bui, Geometrically nonlinear multi-patch isogeometric analysis of spatial Euler–Bernoulli beam structures, Comput. Methods Appl. Mech. Eng., vol. 380, pp. 113808, 2021. DOI: 10.1016/j.cma.2021.113808.
  • A. Alesadi, S. Ghazanfari, and S. Shojaee, B-spline finite element approach for the analysis of thin-walled beam structures based on 1d refined theories using carrera unified formulation, Thin-Walled Struct., vol. 130, pp. 313–320, 2018. DOI: 10.1016/j.tws.2018.05.016.
  • Y. Yan, E. Carrera, A. Pagani, I. Kaleel, and A. G. de Miguel, Isogeometric analysis of 3D straight beam-type structures by carrera unified formulation, Appl. Math. Modell., vol. 79, pp. 768–792, 2020. DOI: 10.1016/j.apm.2019.11.003.
  • F. Rahmani, R. Kamgar, and R. Rahgozar, Analysis of metallic and functionally graded beams using isogeometric approach and carrera unified formulation, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2028042.
  • S. Sanati, B. Daraei, S. Shojaee, and S. Hamzehei-Javaran, Isogeometric buckling analysis of orthotropic thin-walled laminated beams using the carrera unified formulation, Mech. Adv. Mater. Struct., pp. 1–15, 2022. DOI: 10.1080/15376494.2022.2065709.
  • T. J. R. Hughes, Equivalence of finite elements for nearly incompressible elasticity, Trans. ASME, J. Appl. Mech., vol. 44, no. 1, pp. 181–183, 1977. DOI: 10.1115/1.3423994.
  • T. J. R. Hughes, Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Meth. Eng., vol. 15, no. 9, pp. 1413–1418, 1980. DOI: 10.1002/nme.1620150914.
  • D. P. Recio, R. M. N. Jorge, and L. M. S. Dinis, Locking and hourglass phenomena in an element-free galerkin context: The b-bar method with stabilization and an enhanced strain method, Int. J. Numer. Meth. Eng., vol. 68, no. 13, pp. 1329–1357, 2006. DOI: 10.1002/nme.1741.
  • O. C. Zienkiewicz, R. L. Taylor, and J. M. Too, Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Meth. Eng., vol. 3, no. 2, pp. 275–290, 1971. DOI: 10.1002/nme.1620030211.
  • D. S. Malkus, and T. J. R. Hughes, Mixed finite element methods — reduced and selective integration techniques: A unification of concepts, Comput. Methods Appl. Mech. Eng., vol. 15, no. 1, pp. 63–81, 1978. DOI: 10.1016/0045-7825(78)90005-1.
  • H. Stolarski, and T. Belytschko, Membrane locking and reduced integration for curved elements, Trans. ASME, J. Appl. Mech., vol. 49, no. 1, pp. 172–176, 1982. DOI: 10.1115/1.3161961.
  • T. Elguedj, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, B̄ and ̅F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Eng., vol. 197, no. 33-40, pp. 2732–2762, 2008. DOI: 10.1016/j.cma.2008.01.012.
  • R. Bouclier, T. Elguedj, and A. Combescure, Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B̄-method, Comput. Methods Appl. Mech. Eng., vol. 267, pp. 86–110, 2013. DOI: 10.1016/j.cma.2013.08.002.
  • Q. Hu, Y. Xia, S. Natarajan, A. Zilian, P. Hu, and S. P. A. Bordas, Isogeometric analysis of thin Reissner–Mindlin shells: Locking phenomena and b-bar method, Comput Mech., vol. 65, no. 5, pp. 1323–1341, 2020. DOI: 10.1007/s00466-020-01821-5.
  • D. Miao, M. J. Borden, M. A. Scott, and D. C. Thomas, Bézier B̄ projection, Comput. Methods Appl. Mech. Eng., vol. 335, pp. 273–297, 2018. DOI: 10.1016/j.cma.2018.02.019.
  • G. Zhang, R. Alberdi, and K. Khandelwal, On the locking free isogeometric formulations for 3-D curved Timoshenko beams, Finite Elem. Anal. Des., vol. 143, pp. 46–65, 2018. DOI: 10.1016/j.finel.2018.01.007.
  • T. J. R. Hughes, A. Reali, and G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Eng., vol. 199, no. 5-8, pp. 301–313, 2010. DOI: 10.1016/j.cma.2008.12.004.
  • F. Auricchio, F. Calabrò, T. J. R. Hughes, A. Reali, and G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Eng., vol. 249-252, pp. 15–27, 2012. DOI: 10.1016/j.cma.2012.04.014.
  • C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam, Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells, Comput. Methods Appl. Mech. Eng., vol. 284, pp. 106–137, 2015. DOI: 10.1016/j.cma.2014.07.020.
  • L. Greco, and M. Cuomo, An isogeometric implicit g1 mixed finite element for Kirchhoff space rods, Comput. Methods Appl. Mech. Eng., vol. 298, pp. 325–349, 2016. DOI: 10.1016/j.cma.2015.06.014.
  • L. Greco, M. Cuomo, L. Contrafatto, and S. Gazzo, An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods, Comput. Methods Appl. Mech. Eng., vol. 324, pp. 476–511, 2017. DOI: 10.1016/j.cma.2017.06.032.
  • L. Piegl, and W. Tiller, The NURBS Book, 2nd ed., Springer, New York, 1997.
  • T. J. R. Hughes, R. L. Taylor, and W. Kanoknukulchai, A simple and efficient finite element for plate bending, Int. J. Numer. Meth. Eng., vol. 11, no. 10, pp. 1529–1543, 1977. DOI: 10.1002/nme.1620111005.
  • G. Prathap, and G. R. Bhashyam, Reduced integration and the shear-flexible beam element, Int. J. Numer. Meth. Eng., vol. 18, no. 2, pp. 195–210, 1982. DOI: 10.1002/nme.1620180205.
  • K. Mattiasson, Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals, Int. J. Numer. Meth. Eng., vol. 17, no. 1, pp. 145–153, 1981. DOI: 10.1002/nme.1620170113.
  • D. A. DaDeppo, and R. Schmidt, Instability of clamped-hinged circular arches subjected to a point load, Trans. ASME, J. Appl. Mech., vol. 42, no. 4, pp. 894–896, 1975. DOI: 10.1115/1.3423734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.