203
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Applying a novel slime mould algorithm- based artificial neural network to predict the settlement of a single footing on a soft soil reinforced by rigid inclusions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 422-437 | Received 10 Jun 2022, Accepted 13 Aug 2022, Published online: 23 Aug 2022

References

  • J. Zhang, O. Jenck, and D. Dias, 3D numerical analysis of a single footing on soft soil reinforced by rigid inclusions, Int. J. Geomech., vol. 22, no. 8, pp. 04022113, 2022. DOI: 10.1061/(ASCE)GM.1943-5622.0002412.
  • D. V. Cacciola, S. I. Siddiqui, S. Ramp, and F. Ahmed, Rigid inclusion supported embankments for New Jersey Turnpike Interchange 14A: A case study, Geotechnical Special Publication, pp. 94–108, 2018. DOI: 10.1061/9780784481615.008.
  • S. R. Kraemer, R. B. Condon, and K. Wissmann, Rigid inclusion system supports multi-story residential and parking garage structures in organic soil profile, IFCEE 2018, Orlando, Florida, pp. 370–379, 2018. DOI: 10.1061/9780784481622.029.
  • M. Á. Mánica Malcom, E. Ovando-Shelley, and E. Botero Jaramillo, Numerical study of the seismic behavior of rigid inclusions in soft Mexico City clay, J. Earthquake Eng., vol. 20, no. 3, pp. 447–475, 2016. DOI: 10.1080/13632469.2015.1085462.
  • A. J. Rivera, C. G. Olgun, J. S. McCartney, F. Masse, and T. L. Brandon, Centrifuge tests on laterally-loaded footings supported by rigid inclusion-reinforced clay, Geotechnical and Structural Engineering Congress 2016, pp. 996–1005, 2016. DOI: 10.1061/9780784479742.084.
  • B. Chevalier, P. Villard, and G. Combe, Investigation of load-transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions, Int. J. Geomech., vol. 11, no. 3, pp. 239–250, 2011. DOI: 10.1061/(ASCE)GM.1943-5622.0000083.
  • Y. Jiang, J. Han, and G. Zheng, Numerical analysis of a pile–slab-supported railway embankment, Acta Geotech., vol. 9, no. 3, pp. 499–511, 2014. DOI: 10.1007/s11440-013-0285-9.
  • G. A. López Jiménez, D. Dias, and O. Jenck, Effect of the soil–pile–structure interaction in seismic analysis: case of liquefiable soils, Acta Geotech., vol. 14, no. 5, pp. 1509–1525, 2019. DOI: 10.1007/s11440-018-0746-2.
  • H. V. Pham, L. Briançon, D. Dias, and J. Racinais, Investigation of behavior of footings over rigid inclusion-reinforced soft soil: experimental and numerical approaches, Can. Geotech. J., vol. 56, no. 12, pp. 1940–1952, 2019. DOI: 10.1139/cgj-2018-0495.
  • M. Raithel, A. Kirchner, and H. G. Kempfert, Pile-supported embankments on soft ground for a high speed railway: Load transfer, distribution and concentration by different construction methods. In: Advances in Transportation Geotechnics, CRC Press, Nottingham, UK, pp. 415–422, 2008.
  • H. Van Pham and D. Dias, 3D numerical modeling of rigid inclusion-improved soft soils under monotonic and cyclic loading—Case of a small-scale laboratory experiment, Appl. Sci., vol. 11, no. 4, pp. 1426, 2021. DOI: 10.3390/app11041426.
  • J. Andromeda and L. Briançon, Load transfer mechanisms in pile-supported earth platform under slab foundation, Proceedings of the Second British Geotechnical Association International, 2008.
  • S. Boussetta, M. Bouassida, and M. Zouabi, Assessment of observed behavior of soil reinforced by rigid inclusions, Innov. Infrastruct. Solut., vol. 1, no. 1, pp. 1–12, 2016. DOI: 10.1007/s41062-016-0027-6.
  • L. Briançon, D. Dias, and C. Simon, Monitoring and numerical investigation of a rigid inclusions–reinforced industrial building, Can. Geotech. J., vol. 52, no. 10, pp. 1592–1604, 2015. DOI: 10.1139/cgj-2014-0262.
  • D. Dias and B. Simon, Spread foundations on rigid inclusions subjected to complex loading: Comparison of 3D numerical and simplified analytical modelling, Am. J. Appl. Sci., vol. 12, no. 8, pp. 533–541, 2015. DOI: 10.3844/ajassp.2015.533.541.
  • M. A. Nunez, L. Briançon, and D. C. F. S. Dias, Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches, Eng. Geol., vol. 153, pp. 53–67, 2013. DOI: 10.1016/j.enggeo.2012.11.006.
  • U. S. Okyay and L. Briançon, Monitoring and numerical investigations of rigid inclusion reinforced concrete water tank, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Near East University, Nicosia, North Cyprus, pp. 28–30, 2012.
  • A. J. Rivera, C. G. Olgun, T. L. Brandon, and F. Masse, Numerical analysis of rigid inclusion behavior under lateral loads, Geotechnical Frontiers 2017, pp. 30–38, 2017. DOI: 10.1061/9780784480441.004.
  • M. S. Seniwongse, Slab-on-grade versus framed slab, J. Archit. Eng., vol. 16, no. 4, pp. 164–169, 2010. DOI: 10.1061/(ASCE)AE.1943-5568.0000023.
  • Y. X. Zhan, H. L. Yao, and G. L. Jiang, Design method of pile-slab structure roadbed of ballastless track on soil subgrade, J. Cent. South Univ., vol. 20, no. 7, pp. 2072–2082, 2013. DOI: 10.1007/s11771-013-1709-2.
  • F. Leclaire, Y. Bourgoin, R. Ong, and J. Racinais, Application of controlled modulus columns for refinery and petrochemical tank farm, J Earth Engin., vol. 2, no. 1, pp. 13–26, 2017.
  • R. Rui, J. Han, Y. Q. Ye, C. Chen, and Y. X. Zhai, Load transfer mechanisms of granular cushion between column foundation and rigid raft, Int. J. Geomech., vol. 20, no. 1, pp. 04019139, 2020. DOI: 10.1061/(ASCE)GM.1943-5622.0001539.
  • C. Li, J. Zhou, D. J. Armaghani, and X. Li, Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques, Underground Space., vol. 6, no. 4, pp. 379–395, 2021a. DOI: 10.1016/j.undsp.2020.05.005.
  • Y. Li, et al., Stochastic assessment of hard rock pillar stability based on the geological strength index system, Geomech. Geophys. Geo-Energ. Geo-Resour., vol. 7, no. 1, pp. 1–24, 2021b. DOI: 10.1007/s40948-021-00243-8.
  • X. Mei, C. Li, Q. Sheng, Z. Cui, J. Zhou, and D. Dias, Development of a hybrid artificial intelligence model to predict the uniaxial compressive strength of a new aseismic layer made of rubber-sand concrete, Mech. Adv. Mater. Struct., pp. 1–18, 2022. DOI: 10.1080/15376494.2022.2051780.
  • M. N. A. Raja and S. K. Shukla, An extreme learning machine model for geosynthetic-reinforced sandy soil foundations, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, pp. 1–21, 2020.
  • M. N. A. Raja and S. K. Shukla, Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique, J. Rock Mech. Geotech. Eng., vol. 13, no. 4, pp. 899–911, 2021a. DOI: 10.1016/j.jrmge.2021.02.001.
  • M. N. A. Raja and S. K. Shukla, Multivariate adaptive regression splines model for reinforced soil foundations, Geosynthetics Int., vol. 28, no. 4, pp. 368–390, 2021b. DOI: 10.1680/jgein.20.00049.
  • M. N. A. Raja and S. K. Shukla, Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique, Geotext. Geomembr., vol. 49, no. 5, pp. 1280–1293, 2021c. DOI: 10.1016/j.geotexmem.2021.04.007.
  • J. Zhou, et al., Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance, Nat. Resour. Res., vol. 29, no. 2, pp. 625–639, 2020. DOI: 10.1007/s11053-019-09519-z.
  • M. A. Shahin, M. B. Jaksa, and H. R. Maier, Predicting the Settlement of Shallow Foundations on Cohesionless Soils Using Back-Propagation Neural Networks, Department of Civil and Environmental Engineering, University of Adelaide, Australia, 2000.
  • N. Sivakugan, J. Eckersley, and H. Li, Settlement predictions using neural networks, Australian Civil Engin. Trans., vol. 40, pp. 49–52, 1998.
  • M. A. Shahin, H. R. Maier, and M. B. Jaksa, Predicting settlement of shallow foundations using neural networks, J. Geotech. Geoenviron. Eng., vol. 128, no. 9, pp. 785–793, 2002. DOI: 10.1061/(ASCE)1090-0241(2002)128:9(785).
  • M. Rezania and A. A. Javadi, A new genetic programming model for predicting settlement of shallow foundations, Can. Geotech. J., vol. 44, no. 12, pp. 1462–1473, 2007. DOI: 10.1139/T07-063.
  • P. Samui, Support vector machine applied to settlement of shallow foundations on cohesionless soils, Comput. Geotech., vol. 35, no. 3, pp. 419–427, 2008. DOI: 10.3844/ajassp.2015.533.541.
  • A. Soleimanbeigi and N. Hataf, Prediction of settlement of shallow foundations on reinforced soils using neural networks, Geosynthetics Int., vol. 13, no. 4, pp. 161–170, 2006. DOI: 10.1680/gein.2006.13.4.161.
  • J. Zhou, et al., Predicting TBM penetration rate in hard rock condition: a comparative study among six XGB-based metaheuristic techniques, Geosci. Front., vol. 12, no. 3, pp. 101091, 2021a. DOI: 10.1016/j.gsf.2020.09.020.
  • J. Zhou, et al., Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate, Eng. Appl. Artif. Intell., vol. 97, pp. 104015, 2021b. DOI: 10.1016/j.engappai.2020.104015.
  • G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: theory and applications, Neurocomputing., vol. 70, no. 1–3, pp. 489–501, 2006. [Database] DOI: 10.1016/j.neucom.2005.12.126.
  • J. L. Elman, Finding structure in time, Cognitive Sci., vol. 14, no. 2, pp. 179–211, 1990. DOI: 10.1207/s15516709cog1402_1.
  • P. Li, Y. Li, Q. Xiong, Y. Chai, and Y. Zhang, Application of a hybrid quantized Elman neural network in short-term load forecasting, Int. J. Electrical Power & Energy Syst., vol. 55, pp. 749–759, 2014. DOI: 10.1016/j.ijepes.2013.10.020.
  • D. F. Specht, A general regression neural network, IEEE Trans. Neural Netw., vol. 2, no. 6, pp. 568–576, 1991. DOI: 10.1109/72.97934.
  • O. Kisi, M. Tombul, and M. Z. Kermani, Modeling soil temperatures at different depths by using three different neural computing techniques, Theor. Appl. Climatol., vol. 121, no. 1-2, pp. 377–387, 2015. DOI: 10.1007/s00704-014-1232-x.
  • A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput., vol. 14, no. 3, pp. 199–222, 2004. DOI: 10.1023/B:STCO.0000035301.49549.88.
  • B. Dong, C. Cao, and S. E. Lee, Applying support vector machines to predict building energy consumption in tropical region, Energy Build., vol. 37, no. 5, pp. 545–553, 2005. DOI: 10.1016/j.enbuild.2004.09.009.
  • K. L. Priddy and P. E. Keller. Artificial Neural Networks: An Introduction, vol 68. SPIE Press, Bellingham, 2005.
  • M. Shariati, et al., A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement, Engineering with Computers., vol. 38, pp. 757–779, 2020.
  • A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber, A novel connectionist system for unconstrained handwriting recognition, IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855–868, 2009. DOI: 10.1109/TPAMI.2008.137.
  • M. Shariati, et al., Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete, Appl. Sci., vol. 9, no. 24, pp. 5534, 2019. DOI: 10.3390/app9245534.
  • S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., vol. 111, pp. 300–323, 2020. DOI: 10.1016/j.future.2020.03.055.
  • M. Baroni, L. Briançon, J. Racinais, F. Maucotel, and H. Scache, Semelles Sur inclusions rigides: Validation Du Nouveau Cahier Des Charges De Menard - Footings over rigid inclusions: Experimental validation of the menard new specifications, Journées Nationales de Géotechnique et de Géologie de l’Ingénieur– Nancy 2016 SEMELLES, 1–8, 2016.
  • M. Houda, O. Jenck, and F. Emeriault, Soft soil improvement by rigid inclusions under vertical cyclic loading: numerical back analysis, Eur J Environ Civil Engin., vol. 25, no. 3, pp. 409–428, 2021. DOI: 10.1080/19648189.2018.1531268.
  • B. Simon. General Report S5: Rigid Inclusions and Stone Columns, Proceedings of the ISSMGE-TC, International Symposium on Ground Improvement (ISGI), TC 211 Ground Improvement, Belgium, 127–168, 2012.
  • J. D. Andersen, Prediction of compression ratio for clays and organic soils, Proceedings 16th Nordic Geotechnical Meeting, Danish Geotechnical Society, Vol. 27, pp. 303–310, Copenhagen, 2012.
  • L. Tang and S. Na, Comparison of machine learning methods for ground settlement prediction with different tunneling datasets, J. Rock Mech. Geotech. Eng., vol. 13, no. 6, pp. 1274–1289, 2021. DOI: 10.1016/j.jrmge.2021.08.006.
  • H. R. Ansari and A. Gholami, An improved support vector regression model for estimation of saturation pressure of crude oils, Fluid Phase Equilib., vol. 402, pp. 124–132, 2015. DOI: 10.1016/j.fluid.2015.05.037.
  • X. Zhang, J. Wang, and K. Zhang, Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm, Electr. Power Syst. Res., vol. 146, pp. 270–285, 2017. DOI: 10.1016/j.epsr.2017.01.035.
  • F. Pianosi and T. Wagener, A simple and efficient method for global sensitivity analysis based on cumulative distribution functions, Environ Modell Software., vol. 67, pp. 1–11, 2015. DOI: 10.1016/j.envsoft.2015.01.004.
  • F. Pianosi and T. Wagener, Distribution-based sensitivity analysis from a generic input-output sample, Environ Modelling & Software., vol. 108, pp. 197–207, 2018. DOI: 10.1016/j.envsoft.2018.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.