229
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical behavior of entangled metallic wire mesh–silicone rubber interpenetrating phase composites under quasistatic compression

, , , ORCID Icon &
Pages 483-492 | Received 26 May 2022, Accepted 15 Aug 2022, Published online: 25 Aug 2022

References

  • D. R. Clarke, Interpenetrating phase composites, J. Am. Ceramic Soc., vol. 75, no. 4, pp. 739–758, 1992. DOI: 10.1111/j.1151-2916.1992.tb04138.x.
  • L. D. Wenger, and L. J. Ginbson, The mechanical behaviour of interpenetrating phase composites-I: modelling, Int. J. Mech. Sci., vol. 42, pp. 925–942, 2000.
  • I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, Particulate reinforced metal matrix composites: a review, J. Mater. Sci., vol. 26, no. 5, pp. 1137–1156, 1991. DOI: 10.1007/BF00544448.
  • A. Sabik, Direct shear stress vs strain relation for fiber reinforced composites, Composites Part B., vol. 139, pp. 24–30, 2018. DOI: 10.1016/j.compositesb.2017.11.057.
  • F. Wang, X. Zhang, Y. Wang, et al., Damage evolution and distribution of interpenetrating phase composites under dynamic loading, Ceram. Int., vol. 40, no. 8, pp. 13241–13248, 2014. DOI: 10.1016/j.ceramint.2014.05.031.
  • R. Melcher, N. Travitzky, C. Zollfrank, et al., 3D printing of Al2O3/Cu-O interpenetrating phase composite, J Mater Sci., vol. 46, no. 5, pp. 1203–1210, 2011. DOI: 10.1007/s10853-010-4896-3.
  • A. Agarwal, I. V. Singh, and B. K. Mishra, Numerical prediction of elasto-plastic behaviour of interpenetrating phase composites by EFGM, Composites Part B., vol. 51, pp. 327–336, 2013. DOI: 10.1016/j.compositesb.2013.03.022.
  • D. W. Abueidda, A. S. Dalaq, R. A. Alrub, et al., Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements, Int. J. Mech. Sci., vol. 92, pp. 80–89, 2015. DOI: 10.1016/j.ijmecsci.2014.12.004.
  • T. Chou, A. Kelly, and A. Okura, Fibre-reinforced metal-matrix composites, Composites, vol. 16, no. 3, pp. 187–206, 1985. DOI: 10.1016/0010-4361(85)90603-2.
  • M. Chen, L. Zhu, Y. Dong, et al., Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment, ACS Sustain. Chem. Eng., vol. 4, no. 4, pp. 2098–2106, 2016. DOI: 10.1021/acssuschemeng.5b01519.
  • J. B. Zhu, and Y. Hong, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, Int. J. Miner. Metall. Mater., vol. 24, no. 3, pp. 309–315, 2017. DOI: 10.1007/s12613-017-1409-2.
  • K. Navya, C. M. Sai, L. Tapas, et al., Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties, Ceram. Int., vol. 48, pp. 1451–1483, 2022.
  • S. Liu, A. Li, and P. Xuan, Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression, Composites Part A., vol. 116, pp. 87–97, 2019. DOI: 10.1016/j.compositesa.2018.10.026.
  • C. Periasamy, R. Jhaver, and H. V. Tippur, Quasi-static and dynamic compression response of a lightweight interpenetrating phase composite foam, Mater. Sci. Eng. A., vol. 527, no. 12, pp. 2845–2856, 2010. DOI: 10.1016/j.msea.2010.01.066.
  • J. Yuan, X. Chen, W. Zhou, et al., Study on quasi-static compressive properties of aluminum foam-epoxy resin composite structures, Composites Part B., pp. 79, 2015.
  • N. Dukhan, N. Rayess, and J. Hadley, Characterization of aluminum foam-polypropylene interpenetrating phase composites: Flexural test results, Mech. Mater., vol. 42, no. 2, pp. 134–141, 2010. DOI: 10.1016/j.mechmat.2009.09.010.
  • X. Gong, Y. Liu, S. He, et al., Manufacturing and low-velocity impact response of a new composite material: Metal porous polymer composite (MPPC), J. Mater. Sci. Technol., vol. 20, pp. 65–68, 2004.
  • G. Lu, and T. Yu, Energy Absorption of Structures and Materials, Met. Surf. Eng., vol. 31, pp. 385–400, 2003.
  • Y. Liu, Y. Li, and H. Zhang, Effect of gasar processing parameters on structure of lotus-type porous magnesium, Rare Metal Mat. Eng., vol. 34, pp. 1128–1130, 2005.
  • C. Liutao, Z. Huawei, L. Yuan, et al., Experimental research on heat transfer performance of directioanlly solidified porous copper heat sink, Acta Metall. Sin., vol. 48, no. 3, pp. 329–333, 2012. DOI: 10.3724/SP.J.1037.2011.00703.
  • B. Xie, Y. Fan, T. Mu, et al., Fabrication and energy absorption properties of titanium foam with CaCl2 as a space holder, Mater. Sci. Eng. A., vol. 708, pp. 419–423, 2017. DOI: 10.1016/j.msea.2017.09.123.
  • H. Sazegaran, and S. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe-C-P alloys, Int. J. Miner. Metall. Mater., vol. 28, no. 2, pp. 257–265, 2021. DOI: 10.1007/s12613-020-1995-2.
  • Y. Ma, Q. Zhang, D. Zhang, et al., The mechanics of shape memory alloy metal rubber, Acta Mater., vol. 96, pp. 89–100, 2015. DOI: 10.1016/j.actamat.2015.05.031.
  • C. Kartik, R. Jem, and C. Elizabeth, Mechanical behaviour of tangled metal wire devices, Mech. Syst. Sig. Process., vol. 118, pp. 13–29, 2019.
  • Y. Ma, Q. Zhang, Y. Wang, et al., Topology and mechanics of metal rubber via X-ray tomography, Mater. Des., vol. 181, pp. 108067, 2019. DOI: 10.1016/j.matdes.2019.108067.
  • S. Youn, Y. Jang, and J. Han, Development of a three-axis hybrid mesh isolator using the pseudoelasticity of a shape memory alloy, Smart Mater. Struct., vol. 20, pp. 75017, 2011.
  • X. Zheng, Z. Ren, L. Shen, et al., Dynamic performance of laminated high-damping and high-stiffness composite structure composed of metal rubber and silicone rubber, Material, vol. 14, no. 1, pp. 187, 2021. DOI: 10.3390/ma14010187.
  • D. Rodney, B. Gadot, O. R. Martinez, et al., Reversible dilatancy in entangled single-wire materials, Nat. Mater., vol. 15, no. 1, pp. 72–77, 2016. DOI: 10.1038/nmat4429.
  • Z. Ren, J. Huang, H. Bai, et al., Potential application of entangled porous titanium alloy metal rubber in artificial lumbar disc prostheses, J Bionic Eng., vol. 18, no. 3, pp. 584–599, 2021. DOI: 10.1007/s42235-021-0039-6.
  • X. Xia, Y. Zhang, X. Chen, et al., Experiment on mechanical properties of metal rubber bearing, J. Chang'an. Univ., vol. 39, pp. 92–99, 2019.
  • Y. Wang, Z. Zhang, X. Xue, et al., Experimental investigation on enhanced mechanical and damping performance of corrugated structure with metal rubber, Thin-Walled Struct., vol. 154, pp. 106816, 2020. DOI: 10.1016/j.tws.2020.106816.
  • P. Yang, T. Zhou, D. Jia, et al., Compressive mechanical behavior and model of composite elastic-porous metal materials, Mater. Res. Express., vol. 8, no. 12, pp. 126518, 2021. DOI: 10.1088/2053-1591/ac40b5.
  • D. Zhang, F. Scarpa, Y. Ma, et al., Compression mechanics of nickel-based superalloy metal rubber, Mater. Sci. Eng. A., vol. 580, pp. 305–312, 2013. DOI: 10.1016/j.msea.2013.05.064.
  • Y. Liang, Z. Ren, C. Li, et al., Damping and energy dissipation characteristics of pipeline shock absorber with large load of non forming metal rubber, J. Fuzhou Univ., vol. 50, pp. 89–96, 2022.
  • Y. Ma, B. Guo, and Z. Zhu, Static characteristic of mental rubber, J. Aerosp Power., vol. 19, pp. 326–331, 2004.
  • B. Zhang, Z. Ren, H. Bai, et al., Experimental modeling and parameter identification of non-forming damping characteristics of metal rubber, J. Vib. Shock., vol. 40, pp. 243–249, 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.