351
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Application of the CUF–EFG method for buckling analysis of the multilayer GPLs–CNTs-reinforced FG plates with cutout

ORCID Icon & ORCID Icon
Pages 533-549 | Received 27 Jun 2022, Accepted 20 Aug 2022, Published online: 05 Sep 2022

References

  • S. Hosseini-Hashemi, H. R. D. Taher, H. Akhavan, and M. Omidi, Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Appl. Math. Modell., vol. 34, no. 5, pp. 1276–1291, 2010. DOI: 10.1016/j.apm.2009.08.008.
  • Z. Boukhlif, A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation, Steel Compos. Struct., vol. 31, no. 5, pp. 503–516, 2019. DOI: 10.12989/scs.2019.31.5.503.
  • J. Reddy, Analysis of functionally graded plates, Int. J. Numer. Meth. Eng., vol. 47, no. 1–3, pp. 663–684, 2000. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
  • A. M. Zenkour, Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Modell., vol. 30, no. 1, pp. 67–84, 2006. DOI: 10.1016/j.apm.2005.03.009.
  • H. T. Thai, and T. P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Appl. Math. Modell., vol. 37, no. 5, pp. 3269–3281, 2013. DOI: 10.1016/j.apm.2012.08.008.
  • P. M. Phuc, and V. N. Thanh, A new sinusoidal shear deformation theory for static bending analysis of functionally graded plates resting on Winkler–Pasternak foundations, Adv. Civil Eng., vol. 2021, pp. 1–21, vol2021. DOI: 10.1155/2021/6645211.
  • A. Neves, A. Ferreira, E. Carrera, M. Cinefra, R. Jorge, and C. Soares, Buckling analysis of sandwich plates with functionally graded skins using a new quasi‐3D hyperbolic sine shear deformation theory and collocation with radial basis functions, Z. Angew. Math. Mech., vol. 92, no. 9, pp. 749–766, 2012. DOI: 10.1002/zamm.201100186.
  • E. Carrera, Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev., vol. 56, no. 3, pp. 287–308, 2003. DOI: 10.1115/1.1557614.
  • J. Oh, M. Cho, and J.-S. Kim, Dynamic analysis of composite plate with multiple delaminations based on higher-order zigzag theory, Int. J. Solids Struct., vol. 42, no. 23, pp. 6122–6140, 2005. DOI: 10.1016/j.ijsolstr.2005.06.006.
  • R. Sahoo, and B. Singh, A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates, Compos. Struct., vol. 105, pp. 385–397, 2013. DOI: 10.1016/j.compstruct.2013.05.043.
  • R. Sahoo, and B. N. Singh, Assessment of inverse hyperbolic zigzag theory for buckling analysis of laminated composite and sandwich plates using finite element method, Arch. Appl. Mech., vol. 91, no. 1, pp. 169–186, 2021. DOI: 10.1007/s00419-020-01761-9.
  • K. Liew, Z. Pan, and L. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application, Compos. Struct., vol. 216, pp. 240–259, 2019. DOI: 10.1016/j.compstruct.2019.02.074.
  • D. Li, Layerwise theories of laminated composite structures and their applications: a review, Arch. Comput. Methods Eng., vol. 28, no. 2, pp. 577–600, 2021. DOI: 10.1007/s11831-019-09392-2.
  • P. A. Demirhan, and V. Taskin, Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach, Compos. Part B: Eng., vol. 160, pp. 661–676, 2019. DOI: 10.1016/j.compositesb.2018.12.020.
  • F. A. Fazzolari, and E. Carrera, Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates, Compos. Struct., vol. 94, no. 1, pp. 50–67, 2011. DOI: 10.1016/j.compstruct.2011.07.018.
  • E. Carrera, and A. Ciuffreda, A unified formulation to assess theories of multilayered plates for various bending problems, Compos. Struct., vol. 69, no. 3, pp. 271–293, 2005. DOI: 10.1016/j.compstruct.2004.07.003.
  • A. Maji, and P. K. Mahato, Development and applications of shear deformation theories for laminated composite plates: an overview, J. Thermoplast. Compos. Mater., 0892705720930765, 2020. DOI: 10.1177/0892705720930765.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, ARCO., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • M. Cinefra, and E. Carrera, Shell finite elements with different through‐the‐thickness kinematics for the linear analysis of cylindrical multilayered structures, Int. J. Numer. Methods Eng., vol. 93, no. 2, pp. 160–182, 2013. DOI: 10.1002/nme.4377.
  • A. Milazzo, Unified formulation for a family of advanced finite elements for smart multilayered plates, Mech. Adv. Mater. Struct., vol. 23, no. 9, pp. 971–980, 2016. DOI: 10.1080/15376494.2015.1121523.
  • A. Alesadi, M. Galehdari, and S. Shojaee, Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 25, no. 12, pp. 1018–1032, 2018. DOI: 10.1080/15376494.2017.1342883.
  • Z. Nouri, S. Sarrami-Foroushani, F. Azhari, and M. Azhari, Application of Carrera unified formulation in conjunction with finite strip method in static and stability analysis of functionally graded plates, Mech. Adv. Mater. Struct., vol. 29, no. 2, pp. 250–266, 2022. DOI: 10.1080/15376494.2020.1762265.
  • B. Daraei, S. Shojaee, and S. Hamzehei-Javaran, A new finite strip formulation based on Carrera unified formulation for the free vibration analysis of composite laminates, Mech. Adv. Mater. Struct., pp. 1–12, 2021. DOI: 10.1080/15376494.2021.1936706.
  • M. H. Ghadiri Rad, and S. M. Hosseini, Buckling analysis of multilayer FG-CNT reinforced nanocomposite cylinders assuming CNT waviness, agglomeration, and interphase effects using the CUF-EFG method, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2030443.
  • S. Zhao, Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, and J. Yang, Functionally graded graphene reinforced composite structures: A review, Eng. Struct., vol. 210, pp. 110339, 2020. DOI: 10.1016/j.engstruct.2020.110339.
  • A. M. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Compos. Sci. Technol., vol. 70, no. 16, pp. 2237–2241, 2010. DOI: 10.1016/j.compscitech.2010.05.004.
  • H. Ghayoumizadeh, F. Shahabian, and S. M. Hosseini, Elastic wave propagation in a functionally graded nanocomposite reinforced by carbon nanotubes employing meshless local integral equations (LIEs), Eng. Anal. Bound. Elem., vol. 37, no. 11, pp. 1524–1531, 2013. DOI: 10.1016/j.enganabound.2013.08.011.
  • S. M. Hosseini, Elastic wave propagation and time history analysis in FG nanocomposite cylinders reinforced by carbon nanotubes using a hybrid mesh-free method, Eng. Comput., 2014. DOI: 10.1108/EC-12-2012-0312.
  • B. K. Choi, G. H. Yoon, and S. Lee, Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading, Compos. Part B: Eng., vol. 91, pp. 119–125, 2016. DOI: 10.1016/j.compositesb.2015.12.031.
  • L. Zhang, On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates, Compos. Struct., vol. 160, pp. 824–837, 2017. DOI: 10.1016/j.compstruct.2016.10.116.
  • S. M. Hosseini, and C. Zhang, Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model, Steel Compos. Struct., vol. 27, no. 3, pp. 255–271, 2018. DOI: 10.12989/scs.2018.27.3.255.
  • Y. Wang, C. Feng, Z. Zhao, and J. Yang, Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL), Compos. Struct., vol. 202, pp. 38–46, 2018. DOI: 10.1016/j.compstruct.2017.10.005.
  • M. H. G. Rad, F. Shahabian, and S. M. Hosseini, Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model, Steel Compos. Struct., vol. 35, no. 1, pp. 77–92, 2020. DOI: 10.12989/scs.2020.35.1.077.
  • M. Kazemi, M. H. G. Rad, and S. M. Hosseini, Nonlinear dynamic analysis of FG carbon nanotube/epoxy nanocomposite cylinder with large strains assuming particle/matrix interphase using MLPG method, Eng. Anal. Bound. Elem., vol. 132, pp. 126–145, 2021. DOI: 10.1016/j.enganabound.2021.06.028.
  • S. M. Hosseini, Gaussian thermal shock-induced thermoelastic wave propagation in an FG multilayer hybrid nanocomposite cylinder reinforced by GPLs and CNTs, Thin-Walled Struct., vol. 166, pp. 108108, 2021. DOI: 10.1016/j.tws.2021.108108.
  • Y. Wang, C. Feng, J. Yang, D. Zhou, and S. Wang, Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method, Comput. Methods Appl. Mech. Eng., vol. 379, pp. 113761, 2021. DOI: 10.1016/j.cma.2021.113761.
  • Q. Qian, Y. Wang, F. Zhu, C. Feng, J. Yang, and S. Wang, Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs), Arch. Civil Mech. Eng., vol. 22, no. 1, pp. 1–15, 2022. DOI: 10.1007/s43452-021-00369-2.
  • Y. Wang, Y. Zhou, C. Feng, J. Yang, D. Zhou, and S. Wang, Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate, Appl. Math. Modell., vol. 101, pp. 239–258, 2022. DOI: 10.1016/j.apm.2021.08.003.
  • G. R. Liu, Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton, FL, 2009.
  • J. J. Monaghan, Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., vol. 44, no. 1, pp. 323–346, 2012. DOI: 10.1146/annurev-fluid-120710-101220.
  • E. Barbieri, and M. Meo, A fast object-oriented Matlab implementation of the reproducing Kernel Particle Method, Comput. Mech., vol. 49, no. 5, pp. 581–602, 2012. DOI: 10.1007/s00466-011-0662-x.
  • H. Dogan, V. Popov, and E. H. Ooi, Dispersion analysis of the meshless local boundary integral equation and radial basis integral equation methods for the Helmholtz equation, Eng. Anal. Bound. Elem., vol. 50, pp. 360–371, 2015. DOI: 10.1016/j.enganabound.2014.09.009.
  • M. H. Ghadiri Rad, F. Shahabian, and S. M. Hosseini, A meshless local Petrov–Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping, Acta Mech., vol. 226, no. 5, pp. 1497–1513, 2015. DOI: 10.1007/s00707-014-1266-2.
  • M. H. G. Rad, F. Shahabian, and S. M. Hosseini, Geometrically nonlinear elastodynamic analysis of hyper-elastic neo-Hooken FG cylinder subjected to shock loading using MLPG method, Eng. Anal. Bound. Elem., vol. 50, pp. 83–96, 2015. DOI: 10.1016/j.enganabound.2014.08.002.
  • Y. Liu, and S. Chen, Modeling of magneto–electro-elastic problems by a meshless local natural neighbor interpolation method, Eng. Anal. Bound. Elem., vol. 93, pp. 143–149, 2018. DOI: 10.1016/j.enganabound.2018.05.002.
  • L. Gavete, J. Cuesta, and A. Ruiz, A procedure for approximation of the error in the EFG method, Int. J. Numer. Methods Eng., vol. 53, no. 3, pp. 677–690, 2002. DOI: 10.1002/nme.307.
  • M. H. G. Rad, F. Shahabian, and S. M. Hosseini, Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method, Steel Compos. Struct., vol. 32, no. 3, pp. 293–304, 2019. DOI: 10.12989/scs.2019.32.3.293.
  • Y. Gu, Q. Wang, and K. Lam, A meshless local Kriging method for large deformation analyses, Comput. Methods Appl. Mech. Eng., vol. 196, no. 9–12, pp. 1673–1684, 2007. DOI: 10.1016/j.cma.2006.09.017.
  • E. Carrera, and S. Brischetto, Analysis of thickness locking in classical, refined and mixed multilayered plate theories, Compos. Struct., vol. 82, no. 4, pp. 549–562, 2008. DOI: 10.1016/j.compstruct.2007.02.002.
  • J. L. Doong, Vibration and stability of an initially stressed thick plate according to a high-order deformation theory, J. Sound Vib., vol. 113, no. 3, pp. 425–440, 1987. DOI: 10.1016/S0022-460X(87)80131-1.
  • E. Brunelle, and S. Robertson, Vibrations of an initially stressed thick plate, J. Sound Vib., vol. 45, no. 3, pp. 405–416, 1976. DOI: 10.1016/0022-460X(76)90395-3.
  • I. Shufrin, and M. Eisenberger, Stability and vibration of shear deformable plates––first order and higher order analyses, Int. J. Solids Struct., vol. 42, no. 3-4, pp. 1225–1251, 2005. DOI: 10.1016/j.ijsolstr.2004.06.067.
  • T. Yao, and M. Fujikubo, Buckling and Ultimate Strength of Ship and Ship-like Floating Structures, Butterworth-Heinemann, Oxford, UK, 2016. DOI: 10.1016/B978-0-12-803849-9.00004-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.