288
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A damage model based on Tsai–Wu criterion and size effect investigation of pultruded GFRP

ORCID Icon, , &
Pages 571-585 | Received 09 May 2022, Accepted 21 Aug 2022, Published online: 03 Sep 2022

References

  • S.B. Singh, Analysis and Design of FRP Reinforced Concrete Structures, McGraw Hill Professional, New York, 2015.
  • J.R. Correia, Y. Bai, and T. Keller, A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications, Compos. Struct., vol. 127, pp. 267–287, 2015. DOI: 10.1016/j.compstruct.2015.03.006.
  • A. Mohabeddine, J. Correia, P.A. Montenegro, et al., An approach for predicting fatigue life of CFRP retrofitted metallic structural details, Int. J. Fatigue, vol. 154, pp. 106557, 2022. DOI: 10.1016/j.ijfatigue.2021.106557.
  • T. Siwowski, M. Rajchel, and L. Wlasak, Experimental study on static and dynamic performance of a novel GFRP bridge girder, Compos. Struct., vol. 259, no. 1, pp. 113464, 2021. DOI: 10.1016/j.compstruct.2020.113464.
  • M. F. Sá, A. M. Gomes, J. R. Correia, N. Silvestre, Creep behavior of pultruded GFRP elements–Part 1: Literature review and experimental study, Compos. Struct., vol. 93, no. 10, pp. 2450–2459, 2011. DOI: 10.1016/j.compstruct.2011.04.013.
  • J.R. Correia, GFRP Pultruded Profiles in Civil Engineering: Hybrid Solutions, Bonded Connections and Fire Behaviour, Tese de Doutoramento em Engenharia Civil, Instituto Superior Técnico-Universidade Técnica de Lisboa, Lisboa, 2008.
  • R.M. Jones, Mechanics of Composite Materials (2nd ed.). CRC Press. 1999. DOI:10.1201/9781498711067.
  • J.F. Davalos, H.A. Salim, P. Qiao, et al., Analysis and design of pultruded FRP shapes under bending, Compos. Part B, vol. 27, no. 3–4, pp. 295–305, 1996. DOI: 10.1016/1359-8368(95)00015-1.
  • J.E. Ashton, J.C. Halpin, and A. Petit, Primer on Composite Materials: Analysis, Washington University, Seattle, 1969.
  • J. J. Hermans, the elastic properties of fiber reinforced materials when the fibers are aligned, Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam. Proceedings, Series B, Vol. 70, 1, pp. 1–9, 1967.
  • J. Affdl and J.L. Kardos, The Halpin-Tsai equations: A review, Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352. pp. 16, 1976.
  • M.M. Shokrieh and H. Moshrefzadeh-Sani, On the constant parameters of Halpin–Tsai equation, Polymer, vol. 106, pp. 14–20, 2016. DOI: 10.1016/j.polymer.2016.10.049.
  • M. Kanerva, J. Jokinen, E. Sarlin, et al., Lower stiffness of GFRP after sulfuric acid-solution aging is due to degradation of fibre-matrix interfaces? Compos. Struct., vol. 212, pp. 524–534, 2019. DOI: 10.1016/j.compstruct.2019.01.006.
  • M.M. Shokrieh and H. Moshrefzadeh-Sani, A novel laminate analogy to calculate the strength of two-dimensional randomly oriented short-fiber composites, Compos. Sci. Technol., vol. 147, pp. 22–29, 2017. DOI: 10.1016/j.compscitech.2017.04.034.
  • H. Kabir and M.M. Aghdam, A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams, Compos. Struct., vol. 212, pp. 184–198, 2019. DOI: 10.1016/j.compstruct.2019.01.041.
  • H. Kabir and M.M. Aghdam, A generalized 2D Bézier-based solution for stress analysis of notched epoxy resin plates reinforced with graphene nanoplatelets, Thin-Walled Struct., vol. 169, pp. 108484, 2021. DOI: 10.1016/j.tws.2021.108484.
  • P.P. Camanho, G.H. Erçin, G. Catalanotti, et al., A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates, Compos. Part A: Appl. Sci. Manuf., vol. 43, no. 8, pp. 1219–1225, 2012. DOI: 10.1016/j.compositesa.2012.03.004.
  • Z. Suo, G. Bao, B. Fan, et al., Orthotropy rescaling and implications for fracture in composites, Int. J. Solids Struct., vol. 28, no. 2, pp. 235–248, 1991. DOI: 10.1016/0020-7683(91)90208-W.
  • M. Salviato, K. Kirane, Z.P. Bažant, et al., Mode I and II interlaminar fracture in laminated composites: A size effect study, Trans. ASME, J. Appl. Mech., vol. 86, no. 9, pp. 091008, 2019. DOI: 10.1115/1.4043889.
  • S.W. Tsai and E.M. Wu, A general theory of strength for anisotropic materials, J. Compos. Mater., vol. 5, no. 1, pp. 58–80, 1971. DOI: 10.1177/002199837100500106.
  • T.W. Clyne and D. Hull, An Introduction to Composite Materials, Cambridge University Press, Cambridge, UK, 2019.
  • S.W. Tsai and J.D.D. Melo, A unit circle failure criterion for carbon fiber reinforced polymer composites, Compos. Sci. Technol., vol. 123, pp. 71–78, 2016. DOI: 10.1016/j.compscitech.2015.12.011.
  • R. Narayanaswami and H.M. Adelman, Evaluation of the tensor polynomial and Hoffman strength theories for composite materials, J. Compos. Mater., vol. 11, no. 4, pp. 366–377, 1977. DOI: 10.1177/002199837701100401.
  • K.E. Evans and W.C. Zhang, The determination of the normal interaction term in the Tsai–Wu tensor polynomial strength criterion, Compos. Sci. Technol., vol. 30, no. 4, pp. 251–262, 1987. DOI: 10.1016/0266-3538(87)90014-5.
  • P.L. Clouston and F. Lam, Computational modeling of strand-based wood composites, J. Eng. Mech., vol. 127, no. 8, pp. 844–851, 2001. DOI: 10.1061/(ASCE)0733-9399(2001)127:8(844).
  • S. Li, E. Sitnikova, Y. Liang, et al., The Tsai-Wu failure criterion rationalized in the context of UD composites, Compos. Part A: Appl. Sci. Manuf., vol. 102, pp. 207–217, 2017. DOI: 10.1016/j.compositesa.2017.08.007.
  • E. Shahabi and M.R. Forouzan, A damage mechanics-based failure criterion for fiber reinforced polymers, Compos. Sci. Technol., vol. 140, pp. 23–29, 2017. DOI: 10.1016/j.compscitech.2016.12.023.
  • F.K. Chang and L.B. Lessard, Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I—Analysis, J. Compos. Mater., vol. 25, no. 1, pp. 2–43, 1991. DOI: 10.1177/002199839102500101.
  • S.T. Pinho, L. Iannucci, and P. Robinson, Physically based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. Part II: FE implementation, Compos. Part A: Appl. Sci. Manuf., vol. 37, no. 5, pp. 766–777, 2006. DOI: 10.1016/j.compositesa.2005.06.008.
  • C. Schuecker and H.E. Pettermann, A continuum damage model for fiber reinforced laminates based on ply failure mechanisms, Compos. Struct., vol. 76, no. 1–2, pp. 162–173, 2006. DOI: 10.1016/j.compstruct.2006.06.023.
  • P. Maimí, P.P. Camanho, J.A. Mayugo, et al., A continuum damage model for composite laminates: Part II–Computational implementation and validation, Mech. Mater., vol. 39, no. 10, pp. 909–919, 2007. DOI: 10.1016/j.mechmat.2007.03.006.
  • M.L. Ribeiro, V. Tita, and D. Vandepitte, A new damage model for composite laminates, Compos. Struct., vol. 94, no. 2, pp. 635–642, 2012. DOI: 10.1016/j.compstruct.2011.08.031.
  • L. Wei, W. Zhu, Z. Yu, et al., A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels, Compos. Sci. Technol., vol. 182, pp. 107757, 2019. DOI: 10.1016/j.compscitech.2019.107757.
  • S. Zhou, Y. Sun, B. Chen, et al., Progressive damage simulation of open-hole composite laminates under compression based on different failure criteria, J. Compos. Mater., vol. 51, no. 9, pp. 1239–1251, 2017. DOI: 10.1177/0021998316659776.
  • B. Zhan, L. Sun, and B. Huang, Progressive failure prediction of FRP tubes by modified damage model, Int. J. Crashworthiness, vol. 23, no. 6, pp. 593–604, 2018. DOI: 10.1080/13588265.2017.1368118.
  • P.V. Osswald and T.A. Osswald, A strength tensor-based failure criterion with stress interactions, Polym. Compos., vol. 39, no. 8, pp. 2826–2834, 2018. DOI: 10.1002/pc.24275.
  • S.S. Rahimian Koloor, A. Karimzadeh, N. Yidris, et al., An energy-based concept for yielding of multidirectional FRP composite structures using a mesoscale lamina damage model, Polymers, vol. 12, no. 1, pp. 157, 2020. DOI: 10.3390/polym12010157.
  • Y.L. He, J.P. Davim, and H.Q. Xue, 3D progressive damage based macro-mechanical FE simulation of machining unidirectional FRP composite, Chin. J. Mech. Eng., vol. 31, no. 1, pp. 1–16, 2018. DOI: 10.1186/s10033-018-0250-5.
  • W. Weibull, A statistical theory of the strength of materials, Proceedings of the American Mathematical Society, Royal Swedish Academy of Engineering and Science, Stockholm Sweden, Vol. 151, pp. 1–45, 1939.
  • Z.P. Bažant, Size effect in blunt fracture: Concrete, rock, metal, J. Eng. Mech., vol. 110, no. 4, pp. 518–535, 1984. DOI: 10.1061/(ASCE)0733-9399(1984)110:4(518).
  • Z.P. Bažant, M.T. Kazemi, T.S. Hasegawa, et al., Size effect in Brazilian split-cylinder tests: measurement and fracture analysis, Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, vol. 29, no. 1, p. A9, 1992.
  • R.M.A. Khan, S. Saeidiharzand, I.E. Tabrizi, et al., A novel hybrid damage monitoring approach to understand the correlation between size effect and failure behavior of twill CFRP laminates, Compos. Struct., vol. 270, pp. 114064, 2021. DOI: 10.1016/j.compstruct.2021.114064.
  • I.G. García, J. Justo, A. Simon, et al., Experimental study of the size effect on transverse cracking in cross-ply laminates and comparison with the main theoretical models, Mech. Mater., vol. 128, pp. 24–37, 2019. DOI: 10.1016/j.mechmat.2018.09.006.
  • R. Hill, An Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.
  • M. Arruda, L. Almeida-Fernandes, L. Castro, et al., Tsai-Wu based orthotropic damage model, Compos. Part C: Open Access, vol. 4, pp. 100122, 2021. DOI: 10.1016/j.jcomc.2021.100122.
  • L. Almeida-Fernandes, N. Silvestre, and J.R. Correia, Characterization of transverse fracture properties of pultruded GFRP material in tension, Compos. Part B: Eng., vol. 175, pp. 107095, 2019. DOI: 10.1016/j.compositesb.2019.107095.
  • Y. Zhu, H. Zhu, and V. Gribniak, Analyzing the sample geometry effect on mechanical performance of drilled GFRP connections, Materials, vol. 15, no. 8, pp. 2901, 2022. DOI: 10.3390/ma15082901.
  • Z. Xiong, C. Zhao, Y. Liu, et al., Biaxial stress concentration of pultruded GFRP perforated plate considering anisotropic factor, Structures, vol. 33, pp. 2803–2810, 2021. DOI: 10.1016/j.istruc.2021.06.035.
  • G.H. Erçin, Stress gradient effects in laminated composites, PhD thesis[D], University of Porto, 2013.
  • G. Catalanotti, A. Arteiro, M. Hayati, et al., Determination of the mode I crack resistance curve of polymer composites using the size-effect law, Eng. Fract. Mech., vol. 118, pp. 49–65, 2014. DOI: 10.1016/j.engfracmech.2013.10.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.