199
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Novel process for monitoring stress in carbon fiber reinforced polymer composites using magnetostrictive wires from cryogenic to high temperatures

, &
Pages 586-594 | Received 11 May 2022, Accepted 21 Aug 2022, Published online: 14 Sep 2022

References

  • L. C. Hollaway, A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties, Constr. Build. Mater., vol. 24, no. 12, pp. 2419–2445, 2010. DOI: 10.1016/j.conbuildmat.2010.04.062.
  • Y. Kara, A review: Fiber reinforced polymer composite helical springs, J. Mater. Sci. Nanotechnol., vol. 5, pp. 101–106, 2017.
  • Y. Wang, C. Soutis, D. Ando, Y. Sutou, and F. Narita, Application of deep neural network learning in composites design, Eur. J. Mater., vol. 2, no. 1, pp. 118–171, 2022. DOI: 10.1080/26889277.2022.2053302.
  • H. Kurita, M. Suganuma, Y. Wang, and F. Narita, k-means clustering for prediction of tensile properties in carbon fiber-reinforced polymer composites, Adv. Eng. Mater., vol. 24, no. 5, p. 2101072, 2022. DOI: 10.1002/adem.202101072.
  • V. Kaushik, N. Siddgonde, F. Narita, and A. Ghosh, Mode-I fracture control of unidirectional laminated composites using MFC actuators, J. Intell. Mater. Syst. Struct., 2022. DOI: 10.1177/1045389X221088032.
  • T. Takeda and F. Narita, Fracture behavior and crack sensing capability of bonded carbon fiber composite joints with carbon nanotube-based polymer adhesive layer under mode I loading, Compos. Sci. Technol., vol. 146, pp. 26–33, 2017. DOI: 10.1016/j.compscitech.2017.04.014.
  • A. Francesconi, C. Giacomuzzo, S. Kibe, Y. Nagao, and M. Higashide, Effects of high-speed impacts on CFRP plates for space applications, Adv. Space Res., vol. 50, no. 5, pp. 539–548, 2012. DOI: 10.1016/j.asr.2012.05.012.
  • R. Di Sante, Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications, Sensors (Basel). vol. 15, no. 8, pp. 18666–18713, 2015. DOI: 10.3390/s150818666.
  • F. Eichner and J. Belz, Application of the modal approach for prediction of forced response amplitudes for fan blades, J. Eng. Gas Turbines Power., vol. 141, no. 3, p. 031019, 2019. DOI: 10.1115/1.4041453.
  • H. Hamori, H. Kumazawa, R. Higuchi, and T. Yokozeki, Gas permeability of CFRP cross-ply laminates with thin-ply barrier layers under cryogenic and biaxial loading conditions, Compos. Struct., vol. 245, p. 112326, 2020. DOI: 10.1016/j.compstruct.2020.112326.
  • S. Choi and B. V. Sankar, Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems, Compos. Part B. Eng., vol. 39, no. 5, pp. 782–791, 2008. DOI: 10.1016/j.compositesb.2007.10.010.
  • P. F. Liu, J. K. Chu, Y. L. Liu, and J. Y. Zheng, A study of the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission, Mater. Des., vol. 37, pp. 228–235, 2012. DOI: 10.1016/j.matdes.2011.12.015.
  • M. Schwab, M. Todt, M. Wolfahrt, and H. E. Pettermann, Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements, Compos. Sci. Technol., vol. 128, pp. 131–137, 2016. DOI: 10.1016/j.compscitech.2016.03.025.
  • X. P. Qing, S. J. Beard, A. Kumar, H. Chan, and R. Ikegami, Advance in the development of built-in diagnostic system for filament wound composite structures, Compos. Sci. Technol., vol. 66, no. 11-12, pp. 1694–1702, 2006. DOI: 10.1016/j.compscitech.2005.11.007.
  • C. C. Ciang, J. R. Lee, and H. J. Bang, Structural health monitoring for a wind turbine system: A review of damage detection methods, Meas. Sci. Technol., vol. 19, no. 12, p. 122001, 2008. DOI: 10.1088/0957-0233/19/12/122001.
  • M. Mitra and S. Gopalakrishnan, Guided wave based structural health monitoring: A review, Smart Mater. Struct., vol. 25, no. 5, p. 053001, 2016. DOI: 10.1088/0964-1726/25/5/053001.
  • H. Y. Kim, Vibration-based damage identification using reconstructed FRFs in composites structures, J. Sound Vib., vol. 259, no. 5, pp. 1131–1146, 2003. DOI: 10.1006/jsvi.2002.5119.
  • Z. Su, L. Ye, and Y. Lu, Guided lambs waves for identification of damage in composite structures: A review, J. Sound Vib., vol. 295, no. 3-5, pp. 753–780, 2006. DOI: 10.1016/j.jsv.2006.01.020.
  • D. Mba and R. B. Rao, Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: Bearing, pumps, gearboxes, engines and rotating structures, Shock Vib. Dig., vol. 38, no. 1, pp. 3–16, 2006. DOI: 10.1177/0583102405059054.
  • S. Nag-Chowdhury, H. Bellegou, I. Pillin, M. Castro, P. Longrais, and J. F. Feller, Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors, Compos. Sci. Technol., vol. 123, pp. 286–294, 2016. DOI: 10.1016/j.compscitech.2016.01.004.
  • P. Hofmann, A. Walch, A. Dinkelmann, S. K. Selvarayan, and G. T. Gresser, Woven piezoelectric sensors as part of the textile reinforcement of fiber reinforced plastics, Compos. Part A. Appl. Sci. Manuf., vol. 116, pp. 79–86, 2019. DOI: 10.1016/j.compositesa.2018.10.019.
  • D.-A. M. Amafabia, D. Montalvao, O. David-West, and G. Haritos, A review of structural health monitoring techniques as applied to composite structures, SDHM Struct. Durab. Health Monit., vol. 11, no. 2, pp. 91–147, 2017.
  • Y. Okabe, R. Tsuji, and N. Takeda, Application of chirped fiber Bragg grating sensors for identification of crack locations in composites, Compos. Part A. Appl. Sci. Manuf., vol. 35, no. 1, pp. 59–65, 2004. DOI: 10.1016/j.compositesa.2003.09.004.
  • D. M. Sánchez, M. Gresil, and C. Soutis, Distributed internal strain measurement during composite manufacturing using optical fibre sensors, Compos. Sci. Technol., vol. 120, pp. 49–57, 2015. DOI: 10.1016/j.compscitech.2015.09.023.
  • A. Huijer, C. Kassapoglou, and L. Pahlavan, Acoustic emission monitoring of carbon fibre reinforced composites with embedded sensors for in‐situ damage identification, Sensors, vol. 21, no. 20, p. 6926, 2021. DOI: 10.3390/s21206926.
  • A. Alsaadi, Y. Shi, L. Pan, J. Tao, and Y. Jia, Vibration energy harvesting of multifunctional carbon fibre composite laminate structures, Compos. Sci. Technol., vol. 178, pp. 1–10, 2019. DOI: 10.1016/j.compscitech.2019.04.020.
  • Y. Yu and F. Narita, Evaluation of electromechanical properties and conversion efficiency of piezoelectric nanocomposites with carbon-fiber-reinforced polymer electrodes for stress sensing and energy harvesting, Polymers, vol. 13, no. 18, p. 3184, 2021. DOI: 10.3390/polym13183184.
  • S. Banerjee, S. Bairagi, and S. Wazed Ali, A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion, Ceram. Int., vol. 47, no. 12, pp. 16402–16421, 2021. DOI: 10.1016/j.ceramint.2021.03.054.
  • F. Lambinet and Z. Sharif Khodaei, Development of hybrid piezoelectric-fibre optic composite patch repair solutions, Sensors, vol. 21, p. 5131, 2021.
  • K. Takaishi, Y. Kubota, H. Kurita, Z. Wang, and F. Narita, Fabrication and electromechanical characterization of mullite ceramic fiber/thermoplastic polymer piezoelectric composites, J. Am. Ceram. Soc., vol. 105, no. 1, pp. 308–316, 2022. DOI: 10.1111/jace.18047.
  • F. Narita, Z. Wang, H. Kurita, Z. Li, Y. Shi, Y. Jia, and C. Soutis, A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses, Adv. Mater., vol. 33, no. 1, p. 2005448, 2021. DOI: 10.1002/adma.202005448.
  • M. Kubicka, T. Mahrholz, A. Kühn, P. Wierach, and M. Sinapius, Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes, J. Mater. Sci., vol. 47, no. 15, pp. 5752–5759, 2012. DOI: 10.1007/s10853-012-6466-3.
  • F. Narita, Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites, Adv. Eng. Mater., vol. 19, no. 1, p. 1600586, 2017. DOI: 10.1002/adem.201600586.
  • F. Narita and K. Katabira, Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction, Mater. Trans., vol. 58, no. 2, pp. 302–304, 2017. DOI: 10.2320/matertrans.M2016410.
  • K. Katabira, Y. Yoshida, A. Masuda, A. Watanabe, and F. Narita, Fabrication of Fe–Co magnetostrictive fiber reinforced plastic composites and their sensor performance evaluation, Materials, vol. 11, no. 3, p. 406, 2018. DOI: 10.3390/ma11030406.
  • F. Narita, and M. Fox, A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications, Adv. Eng. Mater., vol. 20, p. 1700743, 2018. DOI: 10.1002/adem.201700743.
  • Z. Wang, K. Mori, K. Nakajima, and F. Narita, Fabrication, modeling and characterization of magnetostrictive short fiber composites, Materials, vol. 13, no. 7, p. 1494, 2020. DOI: 10.3390/ma13071494.
  • T. Yamazaki, K. Katabira, F. Narita, Y. Furuya, and W. Nakao, Microstructure-enhanced inverse magnetostrictive effect in Fe–Co alloy wires, Adv. Eng. Mater., vol. 22, no. 10, p. 2000026, 2020. DOI: 10.1002/adem.202000026.
  • Z. Yang, Z. Wang, K. Nakajima, D. Neyama, and F. Narita, Structural design and performance evaluation of FeCo/epoxy magnetostrictive composites, Compos. Sci. Technol., vol. 210, p. 108840, 2021. DOI: 10.1016/j.compscitech.2021.108840.
  • R. Komagome, K. Katabira, H. Kurita, and F. Narita, Characteristics of carbon fiber reinfored polymers embedded with magnetostrictive Fe-Co wires at room and high temperatures, Compos. Sci. Technol., vol. 228, p. 109644, 2022. DOI: 10.1016/j.compscitech.2022.109644.
  • Y. Shindo, K. Mori, and F. Narita, Electromagneto-mechanical fields of giant magnetostrictive/piezoelectric laminates, Acta Mech., vol. 212, no. 3-4, pp. 253–261, 2010. DOI: 10.1007/s00707-009-0259-z.
  • S. Yamaura, Microstructure and magnetostriction of heavily groove-rolled Fe-Co alloy wires, Mater. Sci. Eng. B., vol. 264, p. 114946, 2021. DOI: 10.1016/j.mseb.2020.114946.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.