335
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Three-scale modeling and probabilistic progressive damage analysis of woven composite laminates

, &
Pages 602-618 | Received 27 May 2022, Accepted 21 Aug 2022, Published online: 03 Sep 2022

References

  • Y. L. Hou, L. Meng, G. H. Li, L. Xia, and Y. J. Xu, A novel multiscale modeling strategy of the low-velocity impact behavior of plain woven composites, Compos. Struct., vol. 274, pp. 114363, 2021. DOI: 10.1016/j.compstruct.2021.114363.
  • T. Gereke, and C. Cherif, A review of numerical models for 3D woven composite reinforcements, Compos. Struct., vol. 209, pp. 60–66, 2019. DOI: 10.1016/j.compstruct.2018.10.085.
  • T. Zheng, L. C. Guo, R. J. Sun, Z. X. Li, and H. J. Yu, Investigation on the compressive damage mechanisms of 3D woven composites considering stochastic fiber initial misalignment, Compos. Part A: Appl. Sci. Manuf., vol. 143, pp. 106295, 2021. DOI: 10.1016/j.compositesa.2021.106295.
  • J. W. Boh, L. A. Louca, Y. S. Choo, and S. E. Mouring, Damage modelling of SCRIMP woven roving laminated beams subjected to transverse shear, Compos. Part B: Eng., vol. 36, no. 5, pp. 427–438, 2005. DOI: 10.1016/j.compositesb.2005.01.001.
  • T. Takeda, S. Takano, Y. Shindo, and F. Narita, Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures, Compos. Sci. Technol., vol. 65, no. 11–12, pp. 1691–1702, 2005. DOI: 10.1016/j.compscitech.2005.02.009.
  • I. Kaleel, E. Carrera, and M. Petrolo, Progressive delamination of laminated composites via 1D models, Compos. Struct., vol. 235, pp. 111799, 2020. DOI: 10.1016/j.compstruct.2019.111799.
  • A. Pagani, M. Enea, and E. Carrera, Quasi-static fracture analysis by coupled three-dimensional peridynamics and high order one-dimensional finite elements based on local elasticity, Int. J. Numer. Methods Eng., vol. 123, no. 4, pp. 1098–1113, 2022. DOI: 10.1002/nme.6890.
  • X. P. Wang, D. A. Cai, V. V. Silberschmidt, J. Deng, H. L. Tian, and G. M. Zhou, Tensile properties of 3D multi-layer wrapping braided composite: Progressive damage analysis, Compos. Part B: Eng., vol. 176, pp. 107334, 2019. DOI: 10.1016/j.compositesb.2019.107334.
  • S. Dai, and P. R. Cunningham, Multi-scale damage modelling of 3D woven composites under uni-axial tension, Compos. Struct., vol. 142, pp. 298–312, 2016. DOI: 10.1016/j.compstruct.2016.01.103.
  • I. Kaleel, M. Petrolo, E. Carrera, and A. M. Waas, Computationally efficient concurrent multiscale framework for the nonlinear analysis of composite structures, AIAA J., vol. 57, no. 9, pp. 4029–4041, 2019. DOI: 10.2514/1.J057881.
  • E. Massarwa, J. Aboudi, and R. Haj-Ali, A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics, Compos. Struct., vol. 188, pp. 159–172, 2018. DOI: 10.1016/j.compstruct.2017.11.089.
  • R. S. Kumar, M. Mordasky, G. Ojard, Z. F. Yuan, and J. Fish, Notch-strength prediction of ceramic matrix composites using multi-scale continuum damage model, Materialia, vol. 6, pp. 100267, 2019. DOI: 10.1016/j.mtla.2019.100267.
  • G. Liu, L. Zhang, L. C. Guo, F. Liao, T. Zheng, and S. Y. Zhong, Multi-scale progressive failure simulation of 3D woven composites under uniaxial tension, Compos. Struct., vol. 208, pp. 233–243, 2019. DOI: 10.1016/j.compstruct.2018.09.081.
  • B. A. Bednarcyk, B. Stier, J. W. Simon, S. Reese, and E. J. Pineda, Meso- and micro-scale modeling of damage in plain weave composites, Compos. Struct., vol. 121, pp. 258–270, 2015. DOI: 10.1016/j.compstruct.2014.11.013.
  • Z. M. Yang, and H. Yan, Multiscale modeling and failure analysis of an 8-harness satin woven composite, Compos. Struct., vol. 242, pp. 112186, 2020. DOI: 10.1016/j.compstruct.2020.112186.
  • Y. Zhou, Z. X. Lu, and Z. Y. Yang, Progressive damage analysis and strength prediction of 2D plain weave composites, Compos. Part B: Eng., vol. 47, pp. 220–229, 2013. DOI: 10.1016/j.compositesb.2012.10.026.
  • H. Y. Jiang, Y. R. Ren, Z. H. Liu, S. J. Zhang, and G. Q. Yu, Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading, Thin-Walled Struct., vol. 132, pp. 276–286, 2018. DOI: 10.1016/j.tws.2018.08.022.
  • C. Wang, et al., Strength prediction for bi-axial braided composites by a multi-scale modelling approach, J. Mater. Sci., vol. 51, no. 12, pp. 6002–6018, 2016. DOI: 10.1007/s10853-016-9901-z.
  • J. R. Ge, C. W. He, J. Liang, Y. F. Chen, and D. N. Fang, A coupled elastic-plastic damage model for the mechanical behavior of three-dimensional (3D) braided composites, Compos. Sci. Technol., vol. 157, pp. 86–98, 2018. DOI: 10.1016/j.compscitech.2018.01.027.
  • I. Kaleel, M. Petrolo, and E. Carrera, Elastoplastic and progressive failure analysis of fiber-reinforced composites via an efficient nonlinear microscale model, Aerotec. Missili Spaz., vol. 97, no. 2, pp. 103–110, 2018. DOI: 10.1007/BF03405805.
  • M. Petrolo, M. H. Nagaraj, I. Kaleel, and E. Carrera, A global-local approach for the elastoplastic analysis of compact and thin-walled structures via refined models, Comput. Struct., vol. 206, pp. 54–65, 2018. DOI: 10.1016/j.compstruc.2018.06.004.
  • C. W. He, et al., Multiscale elasto-plastic damage model for the nonlinear behavior of 3D braided composites, Compos. Sci. Technol., vol. 171, pp. 21–33, 2019. DOI: 10.1016/j.compscitech.2018.12.003.
  • C. Hang, H. Cui, H. F. Liu, and T. Suo, Micro/meso-scale damage analysis of a 2.5D woven composite including fiber undulation and in-situ effect. Compos. Struct., vol. 256, pp. 113067, 2021. DOI: 10.1016/j.compstruct.2020.113067.
  • Y. T. Hwang, K. H. Choi, J. I. Kim, J. Lim, B. Nam, and H. S. Kim, Prediction of non-linear mechanical behavior of shear deformed twill woven composites based on a multi-scale progressive damage model, Compos. Struct., vol. 224, pp. 111019, 2019. DOI: 10.1016/j.compstruct.2019.111019.
  • L. Wang, et al., Progressive failure analysis of 2D woven composites at the meso-micro scale, Compos. Struct., vol. 178, pp. 395–405, 2017. DOI: 10.1016/j.compstruct.2017.07.023.
  • L. Xu, C. Z. Jin, and K. S. Ha, Ultimate strength prediction of braided textile composites using a multi-scale approach, J. Compos. Mater., vol. 49, no. 4, pp. 477–494, 2015. DOI: 10.1177/0021998314521062.
  • X. W. Jia, Z. H. Xia, and B. H. Gu, Numerical analyses of 3D orthogonal woven composite under three-point bending from multi-scale microstructure approach, Comput. Mater. Sci., vol. 79, pp. 468–477, 2013. DOI: 10.1016/j.commatsci.2013.06.050.
  • Y. M. Wan, B. Z. Sun, and B. H. Gu, Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions, Mech. Mater., vol. 94, pp. 1–25, 2016. DOI: 10.1016/j.mechmat.2015.11.012.
  • A. R. Sanchez-Majano, A. Pagani, M. Petrolo, and C. Zhang, Buckling sensitivity of tow-steered plates subjected to multiscale defects by high-order finite elements and polynomial chaos expansion, Materials, vol. 14, no. 11, pp. 2706, 2021. DOI: 10.3390/ma14112706.
  • A. Pagani, and A. R. Sanchez-Majano, Stochastic stress analysis and failure onset of variable angle tow laminates affected by spatial fibre variations, Compos. Part C: Open Access, vol. 4, pp. 100091, 2021. DOI: 10.1016/j.jcomc.2020.100091.
  • L. C. Zhou, M. W. Chen, C. Liu, and H. A. Wu, A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites, Compos. Struct., vol. 204, pp. 536–547, 2018. DOI: 10.1016/j.compstruct.2018.07.128.
  • D. Q. Shi, X. F. Teng, X. Jing, S. Q. Lyu, and X. G. Yang, A multi-scale stochastic model for damage analysis and performance dispersion study of a 2.5D fiber-reinforced ceramic matrix composites, Compos. Struct., vol. 248, pp. 112549, 2020. DOI: 10.1016/j.compstruct.2020.112549.
  • L. Ge, H. M. Li, H. Y. Zheng, C. Zhang, and D. N. Fang, Two-scale damage failure analysis of 3D braided composites considering pore defects, Compos. Struct., vol. 260, no. 23, pp. 113556, 2021. DOI: 10.1016/j.compstruct.2021.113556.
  • G. Balokas, B. Kriegesmann, S. Czichon, and R. Rolfes, A variable-fidelity hybrid surrogate approach for quantifying uncertainties in the nonlinear response of braided composites, Comput. Methods Appl. Mech. Eng., vol. 381, pp. 113851, 2021. DOI: 10.1016/j.cma.2021.113851.
  • A. Brem, B. J. Gold, B. Auchmann, D. Tommasini, and T. Tervoort, Elasticity, plasticity and fracture toughness at ambient and cryogenic temperatures of epoxy systems used for the impregnation of high-field superconducting magnets, Cryogenics, vol. 115, pp. 103260, 2021. DOI: 10.1016/j.cryogenics.2021.103260.
  • Z. H. Xia, Y. F. Zhang, and F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., vol. 40, no. 8, pp. 1907–1921, 2003. DOI: 10.1016/S0020-7683(03)00024-6.
  • S. G. Li, and A. Wongsto, Unit cells for micromechanical analyses of particle-reinforced composites, Mech. Mater., vol. 36, no. 7, pp. 543–572, 2004. DOI: 10.1016/S0167-6636(03)00062-0.
  • G. P. Sendeckyj, S. S. Wang, W. Steven Johnson, W. W. Stinchcomb, and C. C. Chamis, Mechanics of composite materials: past, present, and future, J. Compos. Technol. Res., vol. 11, no. 1, pp. 3–14, 1989. DOI: 10.1520/CTR10143J.
  • Karimi, A. Grytz, R. Rahmati, S. M. Girkin, C. A. Downs, and J. C. Analysis, of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole, Comput. Methods Programs Biomed., vol. 198, no. 5, pp. 105794, 2021. DOI: 10.1016/j.cmpb.2020.105794.
  • X. L. Zhong, Influence of different element types on simulation results, J. Henan Sci. Technol., vol. 18, pp. 61–65, 2021. (In Chinese)
  • A. Puck, and H. Schurmann, Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol., vol. 62, no. 12–13, pp. 1633–1662, 2002. DOI: 10.1016/S0266-3538(96)00140-6.
  • Z. Hashin, Failure criteria for unidirectional fiber composites, Trans. ASME, J. Appl. Mech., vol. 47, no. 2, pp. 329–334, 1980. DOI: 10.1115/1.3153664.
  • C. Zhang, N. Li, W. Z. Wang, W. K. Binienda, and H. B. Fang, Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model, Compos. Struct., vol. 125, pp. 104–116, 2015. DOI: 10.1016/j.compstruct.2015.01.034.
  • S. Murakami, Mechanical modeling of material damage, J. Appl. Mech., vol. 55, no. 2, pp. 280–286, 1988. DOI: 10.1115/1.3173673.
  • G. Duvaut, J. L. Lions, and C. W. John, Inequalities in Mechanics and Physics, Springer, Berlin, 1976.
  • ASTM D3039, Standard test method for tensile properties of polymer matrix composite materials, 2008.
  • ASTM D6641, Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture, 2009.
  • ASTM D3518, Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate, 2018.
  • ASTM D2344, Standard test method for short-beam strength of polymer matrix composite materials and their laminates, 2016.
  • ASTM D5766, Standard test method for open-hole tensile strength of polymer matrix composite laminates, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.