161
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The single or combined treatment effect of jute surface modification on mechanical and thermomechanical properties of jute/PLA laminated composites

, , , , &
Pages 619-630 | Received 16 Jul 2022, Accepted 21 Aug 2022, Published online: 05 Sep 2022

References

  • S. Kumar, L. Prasad, V.K. Patel, V. Kumar, A. Kumar, A. Yadav, and J. Winczek, Physical and mechanical properties of natural leaf fiber-reinforced epoxy polyester composites, Polymers, vol. 13, no. 9, pp. 1369, 2021. DOI: 10.3390/polym13091369.
  • R.S. Negi, L. Prasad, A. Yadav, and J. Winczek, Physical and mechanical properties of pinecone scale fiber/Vigna mungo powder reinforced polypropylene based hybrid composites, J. Nat. Fibers, pp. 1–11, 2022. DOI: 10.1080/15440478.2022.2025983.
  • L. Prasad, A. Kumain, R.V. Patel, A. Yadav, and J. Winczek, Physical and mechanical behavior of hemp and nettle fiber-reinforced polyester resin-based hybrid composites, J. Nat. Fibers, vol. 19, no. 7, pp. 2632–2647, 2022. DOI: 10.1080/15440478.2020.1821284.
  • V. Mohanavel, T. Raja, A. Yadav, M. Ravichandran, and J. Winczek, Evaluation of mechanical and thermal properties of jute and ramie reinforced epoxy-based hybrid composites, J. Nat Fibers, pp. 1–11, 2021. DOI: 10.1080/15440478.2021.1958432.
  • S.D. Salman, Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications, Def. Technol., vol. 16, no. 6, pp. 1098–1105, 2020. DOI: 10.1016/j.dt.2019.11.013.
  • B. Shivamurthy, N. Naik, B.H.S. Thimappa, and R. Bhat, Mechanical property evaluation of alkali-treated jute fiber reinforced bio-epoxy composite materials, Mater Today: Proc., vol. 28, no. 4, pp. 2116–2120, 2020. DOI: 10.1016/j.matpr.2020.04.016.
  • P. Pantamanatsop, W. Ariyawiriyanan, T. Meekeaw, R. Suthamyong, K. Arrub, and H. Hamada, Effect of modified jute fiber on mechanical properties of green rubber composite, Energy Procedia, vol. 56, no. 1, pp. 641–647, 2014. DOI: 10.1016/j.egypro.2014.07.203.
  • S. Rajole, K.S. Ravishankar, and S.M. Kulkarni, Performance study of jute-epoxy composites/sandwiches under normal ballistic impact, Def. Technol., vol. 16, no. 4, pp. 947–955, 2020. DOI: 10.1016/j.dt.2019.11.011.
  • S. Fatima and A.R. Mohanty, Acoustical and fire-retardant properties of jute composite materials, Appl. Acoust., vol. 72, no. 2–3, pp. 108–114, 2011. DOI: 10.1016/j.apacoust.2010.10.005.
  • T.T.L. Doan, S.L. Gao, and E. Mader, Jute/polypropylene composites I. Effect of matrix modification, Compos. Sci. Technol., vol. 66, no. 7–8, pp. 952–963, 2006. DOI: 10.1016/j.compscitech.2005.08.009.
  • A.K. Bledzki, A.A. Mamun, and O. Faruk, Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites, Express Polym. Lett., vol. 1, no. 11, pp. 755–762, 2007. DOI: 10.3144/expresspolymlett.2007.104.
  • A.K. Bledzki, P. Franciszczak, Z. Osman, and M. Elbadawi, Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers, Ind. Crops Prod., vol. 70, pp. 91–99, 2015. DOI: 10.1016/j.indcrop.2015.03.013.
  • M. Rokbi, A. Khaldoune, M.R. Sanjay, P. Senthamaraikannan, A. Ati, and S. Siengchin, Effect of processing parameters on tensile properties of recycled polypropylene based composites reinforced with jute fabrics, Int. J. Lightweight Mater. Manuf., vol. 3, no. 2, pp. 144–149, 2020. DOI: 10.1016/j.ijlmm.2019.09.005.
  • M.N. Rahaman, M.S. Hossain, M. Razzak, M.B. Uddin, A.M.S. Chowdhury, and R.A. Khan, Effect of dye and temperature on the physico-mechanical properties of jute/PP and jute/LLDPE based composites, Heliyon, vol. 5, no. 6, pp. e01753, 2019. DOI: 10.1016/j.heliyon.2019.
  • A. Manral and P.K. Bajpai, Effect of chemical treatment on impact strength and dynamic thermal properties of Jute/PLA composites, Mater Today: Proc., vol. 34, no. 2, pp. 546–549, 2021. DOI: 10.1016/j.matpr.2020.03.110.
  • M. Delgado-Aguilar, H. Oliver-Ortega, J. Alberto Méndez, J. Camps, F.X. Espinach, and P. Mutjé, The role of lignin on the mechanical performance of polylactic acid and Chock for jute composites, Int. J. Biol. Macromol., vol. 116, pp. 299–304, 2018. DOI: 10.1016/j.ijbiomac.2018.04.124.
  • G. Rajesh, A. Prasad, and A.V.S.S.K.S. Gupta, Water absorption characteristics of successive alkali treated jute/polylactic acid composites, Mater Today: Proc., vol. 5, no. 11, pp. 24414–24421, 2018. DOI: 10.1016/j.matpr.2018.10.237.
  • A. Manral, F. Ahmad, and V. Chaudhary, Static and dynamic mechanical properties of PLA bio-composite with hybrid reinforcement of flax and jute, Mater Today: Proc., vol. 25, no. 4, pp. 577–580, 2020. DOI: 10.1016/j.matpr.2019.07.240.
  • N. Jiang, T. Yu, Y. Li, T.J. Pirzada, and T.J. Marrow, Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography, Compos. Sci. Technol., vol. 173, pp. 15–23, 2019. DOI: 10.1016/j.compscitech.2019.01.018.
  • N. Jiang, Y.M. Li, Y.K. Li, T. Yu, Y. Li, D. Li, J.C. Xu, C.P. Wang, and Y. Shi, Effect of short jute fibers on the hydrolytic degradation behavior of poly (lactic acid), Polym. Degrad. Stab., vol. 178, no. 109214, pp. 109214, 2020. DOI: 10.1016/j.polymdegradstab.2020.109214.
  • G.S. Sudha, H. Kalita, S. Mohanty, and S.K. Nayak, Biobased epoxy/carbon fiber composites: effect on mechanical, thermo-mechanical and morphological properties, J. Macromol. Sci. A, vol. 54, no. 10, pp. 756–764, 2017. DOI: 10.1080/10601325.2017.1332466.
  • A. Gholampour and T. Ozbakkaloglu, A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, J. Mater. Sci., vol. 55, no. 3, pp. 829–892, 2020. DOI: 10.1007/s10853-019-03990-y.
  • L. Aliotta, P. Cinelli, M.B. Coltelli, M.C. Righetti, M. Gazzano, and A. Lazzeri, Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA), Eur. Polym. J., vol. 93, pp. 822–832, 2017. DOI: 10.1016/j.eurpolymj.2017.04.041.
  • B.L. Ma, L.Y. Jiang, C.Y. Tang, S. Tang, S.P. Su, and Y. Shu, Preparation and properties of biomimetic hydroxyapatite-based nanocomposite utilizing bamboo fiber, Cellulose, vol. 27, no. 4, pp. 2069–2083, 2020. DOI: 10.1007/s10570-019-02920-0.
  • N.T. Phong, M.H. Gabr, L.H. Anh, V.M. Duc, A. Betti, K. Okubo, B. Chuong, and T. Fujii, Improved fracture toughness and fatigue life of carbon fiber reinforced epoxy composite due to incorporation of rubber nanoparticles, J. Mater. Sci., vol. 48, no. 17, pp. 6039–6047, 2013. DOI: 10.1007/s10853-013-7400-z.
  • S. Tanpichai and K. Oksmana, Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery, Compos. Part A: Appl. Sci. Manuf., vol. 88, pp. 226–233, 2016. DOI: 10.1016/j.compositesa.2016.06.002.
  • O. Faruk, A.K. Bledzki, H.P. Fink, and M. Sain, Progress report on natural fiber reinforced composites, Macromol. Mater. Eng., vol. 299, no. 1, pp. 9–26, 2014. DOI: 10.1002/mame.201300008.
  • K.F.A. Dilfi, A. Balan, H. Bin, G.J. Xian, and S. Thomas, Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites, Polym. Compos., vol. 39, pp. 2519–2528, 2018. DOI: 10.1002/pc.24817.
  • M. Agrawal, R. Naik, S. Shetgar, and D. Purnima, Surface treatment of jute fibre using eco-friendly method and its use in PP composites, Mater. Today: Proc., vol. 18, no. 7, pp. 3268–3275, 2019. DOI: 10.1016/j.matpr.2019.07.203.
  • X. Liu, Y.H. Cui, S.K.L. Lee, M. Zhang, and W.J. Nie, Multiscale modeling of nano-SiO2 deposited on jute fibers via macroscopic evaluations and the interfacial interaction by molecular dynamics simulation, Compos. Sci. Technol., vol. 188, no. 107987, pp. 107987, 2020. DOI: 10.1016/j.compscitech.2019.107987.
  • C.C. Fang, Y. Zhang, S.Y. Qi, Y.Y. Li, and P. Wang, Characterization and analyses of degradable composites made with needle-punched jute nonwoven and polylactic acid (PLA) membrane, Cellulose, vol. 27, no. 10, pp. 5971–5980, 2020. DOI: 10.1007/s10570-020-03204-8.
  • C.C. Fang, Y. Zhang, S.Y. Qi, Y.C. Liao, Y.Y. Li, and P. Wang, Influence of structural design on mechanical and thermal properties of jute reinforced polylactic acid (PLA) laminated composites, Cellulose, vol. 27, no. 16, pp. 9397–9407, 2020. DOI: 10.1007/s10570-020-03436-8.
  • L. Segal, J.J. Creely, A.E. Martin, Jr., and C.M. Conrad, An Empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text Res. J., vol. 29, no. 10, pp. 786–794, 1959. DOI: 10.1177/004051755902901003.
  • L. Prasad, S. Kumar, R.V. Patel, A. Yadav, V. Kumar, and J. Winczek, Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy bio-composites, Materials, vol. 13, no. 23, pp. 5387, 2020. DOI: 10.3390/ma13235387.
  • S. Kumar, L. Prasad, V.K. Patel, V. Kumar, A. Kumar, and A. Yadav, Physico-mechanical properties and Taguchi optimized abrasive wear of alkali treated and fly ash reinforced Himalayan Agave fiber polyester composite, J. Nat. Fibers, pp. 1–14, 2021. DOI: 10.1080/15440478.2021.1982818.
  • L. Prasad, V. Singh, R.V. Patel, A. Yadav, V. Kumar, and J. Winczek, Physical and mechanical properties of Rambans (Agave) fiber reinforced with polyester composite materials, J. Nat. Fibers, pp. 1–15, 2021. DOI: 10.1080/15440478.2021.1904481.
  • S. Kumar, L. Prasad, V.K. Patel, A. Kumain, and A. Yadav, Experimental and numerical study on physico-mechanical properties and Taguchi's designed abrasive wear behavior of hemp/nettle-polyester hybrid composite, Polym. Compos., vol. 42, no. 12, pp. 6912–6927, 2021. DOI: 10.1002/pc.26350.
  • L. Prasad, R. Bairwan, A. Yadav, A. Kumar, V. Kumar, and J. Winczek, Evaluation of physical, mechanical, and wear properties of Jatropha shell powder reinforced epoxy glass fiber composites, J. Nat. Fibers, pp. 1–13, 2022. DOI: 10.1080/15440478.2022.2054892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.