254
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization and modeling of a natural fiber hybrid reinforced composite (PxGyEz) for wind turbine blade development using grey relational analysis and regression analysis

, &
Pages 640-658 | Received 05 Jan 2022, Accepted 24 Aug 2022, Published online: 20 Sep 2022

References

  • Y.C. Chang, The exploitation of oceanic methane hydrate: Legal issues and implications for China, Int. J. Mar. Coast. Law, vol. 35, no. 2, pp. 348–381, 2020. DOI: 10.1163/15718085-BJA10003.
  • H. Rezk, A.M. Nassef, M.A. Abdelkareem, A.H. Alami, and A. Fathy, Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system, Int. J. Hydrogen Energy, 2019.
  • M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L.M. Alhems, Assessment of wind energy potential using wind energy conversion system, J. Cleaner Prod., vol. 216, pp. 346–360, 2019. DOI: 10.1016/j.jclepro.2019.01.128.
  • H. Xie, et al., Conceptualization and evaluation of the exploration and utilization of low/medium-temperature geothermal energy: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, Geomech. Geophys. Geo-Energ. Geo-Resour., vol. 6, no. 1, pp. 1–22, 2020. DOI: 10.1007/s40948-019-00140-1.
  • S. Yu, Y. Zheng, and L. Li, A comprehensive evaluation of the development and utilization of China’s regional renewable energy, Energy Policy., vol. 127, pp. 73–86, 2019. DOI: 10.1016/j.enpol.2018.11.056.
  • S. El Mouhsine, K. Oukassou, M.M. Ichenial, B. Kharbouch, and A. Hajraoui, Aerodynamics and structural analysis of wind turbine blade, Procedia. Manuf., vol. 22, pp. 747–756, 2018. DOI: 10.1016/j.promfg.2018.03.107.
  • I.P. Okokpujie, E.J. Eterigho, I. Aladegbeye, and K. Okokpujie, Optimal design and stress/strain analysis of wind turbine blade for optimum performance in energy generation via simulation approach, IJMPERD, vol. 10, no. 1, pp. 95–104, 2020.
  • M.A. Sayed, H.A. Kandil, and A. Shaltot, Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method, Energy Convers. Manage., vol. 64, pp. 541–550, 2012. DOI: 10.1016/j.enconman.2012.05.030.
  • P.J. Schubel, and R.J. Crossley, Wind turbine blade design, Energies, vol. 5, no. 9, pp. 3425–3449, 2012. DOI: 10.3390/en5093425.
  • L. Thomas, and M. Ramachandra, Advanced materials for wind turbine blade-A review, Mater. Today: Proc., vol. 5, no. 1, pp. 2635–2640, 2018.
  • Z. Belfkira, H. Mounir, and A. El Marjani, Structural optimization of a horizontal axis wind turbine blade made from new hybrid composites with kenaf fibers, Compos. Struct., vol. 260, pp. 113252, 2021. DOI: 10.1016/j.compstruct.2020.113252.
  • B.Y. Mekonnen, and Y.J. Mamo, Tensile and flexural analysis of a hybrid bamboo/jute fiber-reinforced composite with polyester matrix as a sustainable green material for wind turbine blades, Int. J. Eng., vol. 33, no. 2, pp. 314–319, 2020.
  • H. Ullah, B. Ullah, and V.V. Silberschmidt, Structural integrity analysis and damage assessment of a long composite wind turbine blade under extreme loading, Compos. Struct., vol. 246, pp. 112426, 2020. DOI: 10.1016/j.compstruct.2020.112426.
  • R. Wiser, et al., Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050, Nat. Energy., vol. 6, no. 5, pp. 555–565, 2021. DOI: 10.1038/s41560-021-00810-z.
  • S.K. Acharya, and S.C. Mishra, Weathering behavior of fly-ash jute polymer composite, J. Reinf. Plast. Compos., vol. 26, no. 12, pp. 1201–1210, 2007. DOI: 10.1177/0731684407079366.
  • H. Aireddy, and S.C. Mishra, Tribological behavior and mechanical properties of bio-waste reinforced polymer matrix composites, J. Metall. Mater. Sci., vol. 53, no. 2, pp. 139–152, 2011.
  • A. Gupta, A. Kumar, A. Patnaik, and S. Biswas, Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites, Int. J. Polym. Sci., vol. 2011, pp. 1–10, 2011. DOI: 10.1155/2011/592906.
  • S.C. Mishra, Low cost polymer composites with rural resources, J. Reinf. Plast. Compos., vol. 28, no. 18, pp. 2183–2188, 2009. DOI: 10.1177/0731684408092372.
  • A.A. Adediran, I.O. Oladele, T.F. Omotosho, O.S. Adesina, T.M.A. Olayanju, and I.M. Fasemoyin, Water absorption, flexural properties and morphological characterization of chicken feather fiber-wood sawdust hybrid reinforced waste paper-cement bio-composites, Mater. Today: Proc., vol. 44, pp. 2843–2848, 2021. DOI: 10.1016/j.matpr.2020.12.1166.
  • T.Y. Chong, M.C. Law, and Y. San Chan, The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites, J. Polym. Environ., pp. 1–19, 2020.
  • J.L.C. Hui, F.F. Azman, and R. Baini, Physico-mechanical and morphological properties of rice husk-coconut husk fiber reinforced epoxy composites, MJFAS, vol. 16, no. 4, pp. 437–443, 2020.
  • A. Patti, G. Cicala, and D. Acierno, Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world, Polymers, vol. 13, no. 1, pp. 134, 2020. DOI: 10.3390/polym13010134.
  • R. Ahsan, A. Masood, R. Sherwani, and H. Khushbakhat, Extraction and application of natural dyes on natural fibers: An eco-friendly perspective, REAL, vol. 3, no. 1, pp. 63–75, 2020. DOI: 10.47067/real.v3i1.22.
  • N. Karthi, K. Kumaresan, S. Sathish, S. Gokulkumar, L. Prabhu, and N. Vigneshkumar, An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas, Mater. Today: Proc., vol. 27, pp. 2828–2834, 2020.
  • K. Agarwal, S.K. Kuchipudi, B. Girard, and M. Houser, Mechanical properties of fiber reinforced polymer composites: A comparative study of conventional and additive manufacturing methods, J. Compos. Mater., vol. 52, no. 23, pp. 3173–3181, 2018. DOI: 10.1177/0021998318762297.
  • D.K. Rajak, D.D. Pagar, P.L. Menezes, and E. Linul, Fiber-reinforced polymer composites: Manufacturing, properties, and applications, Polymers, vol. 11, no. 10, pp. 1667, 2019. DOI: 10.3390/polym11101667.
  • V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, and J.G.D. Tadimeti, Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects, Compos. B. Eng., vol. 174, pp. 106956, 2019. DOI: 10.1016/j.compositesb.2019.106956.
  • M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S.V. Lomov, Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance, J. Compos. Mater., vol. 53, no. 12, pp. 1579–1669, 2019. DOI: 10.1177/0021998318772152.
  • H. Jariwala, and P. Jain, A review on mechanical behavior of natural fiber reinforced polymer composites and its applications, J. Reinf. Plast. Compos., vol. 38, no. 10, pp. 441–453, 2019. DOI: 10.1177/0731684419828524.
  • M.Z. Khan, S.K. Srivastava, and M.K. Gupta, Tensile and flexural properties of natural fiber reinforced polymer composites: A review, J. Reinf. Plast. Compos., vol. 37, no. 24, pp. 1435–1455, 2018. DOI: 10.1177/0731684418799528.
  • R. Rahman, and S. Z. F. S. Putra, Tensile properties of natural and synthetic fiber-reinforced polymer composites, Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 81–102, 2019.
  • X. Tang, and X. Yan, A review on the damping properties of fiber reinforced polymer composites, J. Ind. Text., vol. 49, no. 6, pp. 693–721, 2020. DOI: 10.1177/1528083718795914.
  • A.G. Adeniyi, J.O. Ighalo, and D.V. Onifade, Banana and plantain fiber-reinforced polymer composites, J. Polym. Eng., vol. 39, no. 7, pp. 597–611, 2019. DOI: 10.1515/polyeng-2019-0085.
  • J. Naveen, M. Jawaid, P. Amuthakkannan, and M. Chandrasekar, 2019. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, pp. 427–440.
  • S. Alsubari, M.Y.M. Zuhri, S.M. Sapuan, M.R. Ishak, R.A. Ilyas, and M.R.M. Asyraf, Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties, Polymers, vol. 13, no. 3, pp. 423, 2021. DOI: 10.3390/polym13030423.
  • H. Chen, W. Zhu, H. Tang, and W. Yan, Oriented structure of short fiber reinforced polymer composites processed by selective laser sintering: The role of powder-spreading process, Int. J. Mach. Tools Manuf., vol. 163, pp. 103703, 2021. DOI: 10.1016/j.ijmachtools.2021.103703.
  • A. Ahmed, et al., A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures, Constr. Build. Mater., vol. 294, pp. 123565, 2021. DOI: 10.1016/j.conbuildmat.2021.123565.
  • P. Morampudi, K.K. Namala, Y.K. Gajjela, M. Barath, and G. Prudhvi, Review on glass fiber reinforced polymer composites, Mater. Today: Proc., vol. 43, pp. 314–319, 2021.
  • 39. Sultan, M.T.H., Azmi, A.I., Abd Majid, M.S., Jamir, M.R.M., & Saba, N. (Eds.)., 2021. Machining and Machinability of Fiber Reinforced Polymer Composites, Springer, Singapore.
  • P. Maichin, T. Suwan, P. Jitsangiam, P. Chindaprasirt, and M. Fan, Effect of self-treatment process on properties of natural fiber-reinforced geopolymer composites, Mater. Manuf. Processes., vol. 35, no. 10, pp. 1120–1128, 2020. DOI: 10.1080/10426914.2020.1767294.
  • K. Shaker, Y. Nawab, and M. Jabbar, Bio-composites: Eco-friendly substitute of glass fiber composites, In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, pp. 1–25, 2020.
  • S.A. Bello, Carbon-fiber composites: Development, structure, properties, and applications. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer, Cham, pp. 1–22, 2020.
  • B. Gangil, L. Ranakoti, S. Verma, T. Singh, and S. Kumar, Natural and synthetic fibers for hybrid composites. In: Hybrid Fiber Composites: Materials, Manufacturing, Process Engineering, pp. 1–15, 2020.
  • A. Gholampour, and T. Ozbakkaloglu, A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications, J. Mater. Sci., vol. 55, no. 3, pp. 829–892, 2020. DOI: 10.1007/s10853-019-03990-y.
  • N.M. Nurazzi, et al., A review on mechanical performance of hybrid natural fiber polymer composites for structural applications, Polymers, vol. 13, no. 13, pp. 2170, 2021. DOI: 10.3390/polym13132170.
  • S. Radoor, J. Karayil, S.M. Rangappa, S. Siengchin, and J. Parameswaranpillai, A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix, Express Polym. Lett., vol. 14, no. 4, pp. 309–335, 2020. DOI: 10.3144/expresspolymlett.2020.27.
  • M. Ramasamy, A.A. Daniel, M. Nithya, S.S. Kumar, and R. Pugazhenthi, Characterization of natural–Synthetic fiber reinforced epoxy based composite–Hybridization of kenaf fiber and kevlar fiber, Mater. Today: Proc., vol. 37, pp. 1699–1705, 2021.
  • S.K. Singh, N.K. Wagmare, S. Khan, and R.K. Mishra, 2021. Mechanical properties of epoxy hybrid composites reinforced with agave fiber and zinc powder, In AIP Conference Proceedings, vol. 2317, no. 1, p. 20025, AIP Publishing LLC.
  • I. Miturska, A. Rudawska, M. Müller, and P. Valášek, The influence of modification with natural fillers on the mechanical properties of epoxy adhesive compositions after storage time, Materials, vol. 13, no. 2, pp. 291, 2020. DOI: 10.3390/ma13020291.
  • A. Verma, A. Parashar, N. Jain, V.K. Singh, S.M. Rangappa, and S. Siengchin, 2020. Surface modification techniques for the preparation of different novel biofibers for composites. In Biofibers and Biopolymers for Biocomposites, Springer, Cham, pp. 1–34.
  • L. Kerni, S. Singh, A. Patnaik, and N. Kumar, A review on natural fiber reinforced composites, Mater. Today: Proc., vol. 28, pp. 1616–1621, 2020.
  • P. Lokesh, T.S. Kumari, R. Gopi, and G.B. Loganathan, A study on mechanical properties of bamboo fiber reinforced polymer composite, Mater. Today: Proc., vol. 22, pp. 897–903, 2020.
  • K. Muthukumar, R.V. Sabariraj, S.D. Kumar, and T. Sathish, Investigation of thermal conductivity and thermal resistance analysis on different combination of natural fiber composites of banana, pineapple and jute, Mater. Today: Proc., vol. 21, pp. 976–980, 2020.
  • H. Khakpour, M.R. Ayatollahi, A. Akhavan-Safar, and L.F.M. da Silva, Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: Effects of length, density and fiber type, Compos. Struct., vol. 237, pp. 111950, 2020. DOI: 10.1016/j.compstruct.2020.111950.
  • A. Sharma, and R. Chaudhary, 2020. Review of effect of fiber length on the mechanical properties of biocomposites. Available at SSRN 3679784.
  • X. Xing, et al., Effect of fiber length and surface treatment on the performance of fiber-modified binder, Constr. Build. Mater., vol. 248, pp. 118702, 2020. DOI: 10.1016/j.conbuildmat.2020.118702.
  • P.R.V. Doddi, R. Chanamala, and S.P. Dora, Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites, Mater. Res. Express., vol. 7, no. 1, pp. 15329, 2020. DOI: 10.1088/2053-1591/ab6771.
  • N. Mohd Nurazzi, et al., Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites, Polymer, pp. 65, 2020.
  • Xiaolong Hao, et al., Effects of fiber geometry and orientation distribution on the anisotropy of mechanical properties, creep behavior, and thermal expansion of natural fiber/HDPE composites, Compos. B. Eng., vol. 185, pp. 107778, 2020. DOI: 10.1016/j.compositesb.2020.107778.
  • K.M. Hasan, P.G. Horváth, and T. Alpár, Potential natural fiber polymeric nanobiocomposites: A review, Polymers., vol. 12, no. 5, pp. 1072, 2020. DOI: 10.3390/polym12051072.
  • T. Batu, H.G. Lemu, and B. Sirhabizuh, Study of the performance of natural fiber reinforced composites for wind turbine blade applications, ASTRJ, vol. 14, no. 2, 2020.
  • H. Mohit, H.B. Vishwanath, G.H. Kumar, V.A.M. Selvan, M.R. Sanjay, and S. Siengchin, 2021. Applications and drawbacks of bamboo fiber composites. In Bamboo Fiber Composites, Springer, Singapore, pp. 247–270.
  • K.U. Reddy, B. Deb, and B. Roy, 2021. Analysis of the aerodynamic characteristics of NREL S823 and DU 06-W-200 airfoils at various Reynolds numbers using QBlade. In Emerging Trends in Mechanical Engineering, Springer, Singapore, pp. 279–286
  • B.O. Samuel, M. Sumaila, and B. Dan-Asabe, Modeling and optimization of the manufacturing parameters of a hybrid fiber reinforced polymer composite PxGyEz, Int. J. Adv. Manuf. Technol., vol. 118, no. 5–6, pp. 1441–1452, 2022. DOI: 10.1007/s00170-021-07930-6.
  • B.O. Samuel, M. Sumaila, and B. Dan-Asabe, Manufacturing of a natural fiber/glass fiber hybrid reinforced polymer composite (PxGyEz) for high flexural strength: An optimization approach, Int. J. Adv. Manuf. Technol., vol. 119, no. 3–4, pp. 2077–2088, 2022. DOI: 10.1007/s00170-021-08377-5.
  • C.H. Lee, A. Khalina, S.H. Lee, F.N.M. Padzil, and Z.M.A. Ainun, 2020. Physical, morphological, structural, thermal and mechanical properties of pineapple leaf fibers. In Pineapple Leaf Fibers, Springer, Singapore, pp. 91–121
  • G. Rajeshkumar, S. Ramakrishnan, T. Pugalenthi, and P. Ravikumar, 2020. Performance of surface modified pineapple leaf fiber and its applications. In: Pineapple Leaf Fibers, Springer, Singapore, pp. 309–321.
  • M. Asim, et al., A review on pineapple leaves fibre and its composites, Int. J. Polym. Sci., vol. 2015, pp. 1–16, 2015. DOI: 10.1155/2015/950567.
  • S. Mishra, M. Misra, S.S. Tripathy, S.K. Nayak, and A.K. Mohanty, Potentiality of pineapple leaf fibre as reinforcement in PALF-polyester composite: Surface modification and mechanical performance, J. Reinf. Plast. Compos., vol. 20, no. 4, pp. 321–334, 2001. DOI: 10.1177/073168401772678779.
  • A.H. Alfarra, L.F. Samhan, Y.E. Aslem, M.M. Almasawabe, and S.S. Abu-Naser, 2022. Classification of pineapple using deep learning. International Journal of Academic Information Systems Research (IJAISR). Vol. 5, no. 12, pp. 37–41, 2021.
  • P.K. Sarangi, et al., Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review, Bioresour. Technol., vol. 351, pp. 127085, 2022. DOI: 10.1016/j.biortech.2022.127085.
  • M. Gul, et al., Grey-Taguchi and ANN based optimization of a better performing low-emission diesel engine fueled with biodiesel, Energy Sources. Part A, pp. 1–14, 2019.
  • T.T. Hong, N.M. Cuong, N.D. Ngoc, L.A. Tung, T.N. Giang, and N.T. Tu, 2020. Multi-objective optimization of process parameters during electrical discharge machining of hardened 90CrSi steel by applying Taguchi technique with grey relational analysis. In International Conference on Engineering Research and Applications, Springer, Cham, pp. 572–583.
  • M. Kumar, G. Kumar, O.P. Singh, and A. Tomer, 2021. Multiperformance optimization of parameters in deep drilling of SS-321 by Taguchi-based GRA. In Recent Advances in Mechanical Engineering, Springer, Singapore, pp. 675–681.
  • M. Padmaja, and D.D. Haritha, Optimization of process parameters using grey-Taguchi method for software effort estimation of software project, IJIGSP, vol. 9, pp. 10–16, 2018.
  • M. Pervez, F. Shafiq, Z. Sarwar, M.M. Jilani, and Y. Cai, Multi-response optimization of resin finishing by using a Taguchi-based grey relational analysis, Materials, vol. 11, no. 3, pp. 426, 2018. DOI: 10.3390/ma11030426.
  • S.A. Rizvi, and A. Wajahat, Integration of grey-based Taguchi technique in optimization of parameters process during the turning operation of 16MnCr5 steel, IJIEPR, vol. 30, no. 3, pp. 245–254, 2019.
  • S. Singh, N. Singh, M. Gupta, C. Prakash, and R. Singh, Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer, RPJ, vol. 25, no. 1, pp. 152–161, 2019. DOI: 10.1108/RPJ-01-2018-0028.
  • M. Nachtane, M. Tarfaoui, S. Sassi, A. El Moumen, and D. Saifaoui, An investigation of hygrothermal aging effects on high strain rate behaviour of adhesively bonded composite joints, Compos. B. Eng., vol. 172, pp. 111–120, 2019. DOI: 10.1016/j.compositesb.2019.05.030.
  • M. Tarfaoui, M. Nachtane, and H. Boudounit, Finite element analysis of composite offshore wind turbine blades under operating conditions, J. Therm. Sci. Eng. Appl., vol. 12, no. 1, 2020. DOI: 10.1115/1.4042123.
  • M. Tarfaoui, M. Nachtane, H. Khadimallah, et al., Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads, Appl. Compos. Mater., vol. 25, no. 2, pp. 237–254, 2018. DOI: 10.1007/s10443-017-9612-x.
  • M. Tarfaoui, O.R. Shah, and M. Nachtane, Design and optimization of composite offshore wind turbine blades, J. Energy Resour. Technol., vol. 141, no. 5, 2019. DOI: 10.1115/1.4042414.
  • D. Marten, J. Wendler, G. Pechlivanoglou, C.N. Nayeri, and C.O. Paschereit, QBLADE: An open source tool for design and simulation of horizontal and vertical axis wind turbines, Int. J. Emerging Technol. Adv. Eng., vol. 3, no. 3, pp. 264–269, 2013.
  • S.S.P. Reddy, R. Suresh, H. Mb, and B.P. Shivakumar, Use of composite materials and hybrid composites in wind turbine blades, Mater. Today: Proc., vol. 46, pp. 2827–2830, 2021. DOI: 10.1016/j.matpr.2021.02.745.
  • J. Saverin, D. Marten, G. Pechlivanoglou, C.N. Nayeri, and C.O. Paschereit, 2016. Coupling of an unsteady lifting line free vortex wake code to the aeroelastic HAWT simulation suite FAST, In Turbo Expo: Power for Land, Sea, and Air, vol. 49873, p. V009T46A002. American Society of Mechanical Engineers. DOI: 10.1115/GT2016-56290.
  • J. Wendler, D. Marten, G. Pechlivanoglou, C.N. Nayeri, and C.O. Paschereit, 2016. An unsteady aerodynamics model for lifting line free vortex wake simulations of hawt and vawt in qblade, In Turbo Expo: Power for Land, Sea, and Air, vol. 49873, p. V009T46A011, American Society of Mechanical Engineers. DOI: 10.1115/GT2016-57184.
  • H. Park, A study on structural design and analysis of small wind turbine blade with natural fibre (flax) composite, Adv. Compos. Mater., vol. 25, no. 2, pp. 125–142, 2016. DOI: 10.1080/09243046.2015.1052186.
  • P.Y. Andoh, C.K.K. Sekyere, G.K. Ayetor, and M.N. Sackey, Fabrication and testing of a low-cost wind turbine blade using bamboo reinforced recycled plastic, JAETS, vol. 2, no. 2, pp. 125–138, 2021. DOI: 10.37385/jaets.v2i2.212.
  • R. Elalaoui, Investigation and analysis of static and dynamic behaviour of a new natural composite material of a wind turbine blade using the finite element method, IJRER., vol. 9, no. 1, pp. 363–373, 2019.
  • ASTM International, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM D790-07, 2007.
  • ASTM International, ASTM D638-14. Standard test method for tensile properties of plastics, ASTM International, 2015.
  • J. Jonkman, S. Butterfield, W. Musial, and G. Scott, 2009. Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab.(NREL), Golden, CO (United States).
  • K.L. Dykes, and J. Rinker, Windpact Reference Wind Turbines (No. NREL/TP-5000-67667), National Renewable Energy Lab. (NREL), Golden, CO (United States), 2018.
  • M. Mittal, and R. Chaudhary, Experimental study on the water absorption and surface characteristics of alkali treated pineapple leaf fiber and coconut husk fiber, Int J Appl Eng Res., vol. 13, no. 15, pp. 12237–12243, 2018.
  • M. Alaskari, O. Abdullah, and M.H. Majeed, 2019. Analysis of wind turbine using QBlade software. In IOP conference series: materials science and engineering (Vol. 518, No. 3, p. 032020). IOP Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.