351
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Post-buckling behavior of rectangular multilayer FG-GPLRC plate with initial geometric defects subjected to non-uniform in-plane compression loads in thermal environment

ORCID Icon, , , , &
Pages 693-712 | Received 30 May 2022, Accepted 26 Aug 2022, Published online: 09 Sep 2022

References

  • K. S. Novoselov, et al., Electric field effect in atomically thin carbon films, Science, vol. 306, no. 5696, pp. 666–669, 2004. DOI: 10.1126/science.1102896.
  • A. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, vol. 321, no. 5887, pp. 385–388, 2008. DOI: 10.1126/science.1157996.
  • M. Habibi, M. Safarpourc, and H. Safarpourd, Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods, Mech. Base. Des. Struct. Mach., vol. 50, no. 7, pp. 2471–2492, 2022. DOI: 10.1080/15397734.2020.1779086.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. H. Song, Z. Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano., vol. 3, no. 12, pp. 3884–3890, 2009. DOI: 10.1021/nn9010472.
  • W. L. Gao, Z. Y. Qin, and F. L. Chu, Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerosp. Sci. Tech., vol. 102, no. 105860, pp. 105860, 2020. DOI: 10.1016/j.ast.2020.105860.
  • H. L. Wu, S. Kitipornchai, and J. Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates, Mater. Des., vol. 132, pp. 430–441, 2017. DOI: 10.1016/j.matdes.2017.07.025.
  • T. D. Singha, T. Bandyopadhyay, and A. Karmakar, A numerical solution for thermal free vibration analysis of rotating pre-twisted FG-GRC cylindrical shell panel, Mech. Adv. Mater. Struct., pp. 1–19, 2022. DOI: 10.1080/15376494.2022.2067924.
  • J. Yang, H. L. Wu, and S. Kitipornchai, Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Compos. Struct., vol. 161, pp. 111–118, 2017. DOI: 10.1016/j.compstruct.2016.11.048.
  • M. T. Song, S. Kitipornchai, and J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct., vol. 159, pp. 579–588, 2017. DOI: 10.1016/j.compstruct.2016.09.070.
  • M. Rezaiee-Pajand, E. Sobhani, and A. R. Masoodi, Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method, Aerosp. Sci. Tech., vol. 105, no. 105998, pp. 105998, 2020. DOI: 10.1016/j.ast.2020.105998.
  • S. Qaderi1 and F. Ebrahimi, Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two‑parameter viscoelastic foundation, Eng. with Comp., vol. 38, pp. 419–435, 2022. DOI: 10.1007/s00366-020-01066-z.
  • A. Fakhar and R. Kolahchi, Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates, Int. J. Mech. Sci., vol. 144, pp. 788–799, 2018. DOI: 10.1016/j.ijmecsci.2018.06.036.
  • S. Sahmani and M. M. Aghdam, Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory, Int. J. Mech. Sci., vol. 131–132, pp. 95–106, 2017. DOI: 10.1016/j.ijmecsci.2017.06.052.
  • M. R. Barati and A. M. Zenkour, Analysis of postbuckling of graded porous GPLreinforced beams with geometrical defect, Mech. Adv. Mater. Struct., vol. 26, no. 6, pp. 503–511, 2019. DOI: 10.1080/15376494.2017.1400622.
  • H. L. Wu, J. Yang, and S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment, Compos. Struct., vol. 162, pp. 244–254, 2017. DOI: 10.1016/j.compstruct.2016.12.001.
  • R. Ansari, M. Faraji Oskouie, M. Roghani, and H. Rouhi, Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model, Acta Mech., vol. 232, no. 6, pp. 2183–2199, 2021. DOI: 10.1007/s00707-021-02935-4.
  • C. Feng, S. Kitipornchai, and J. Yang, Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs), Eng. Struct., vol. 140, pp. 110–119, 2017. DOI: 10.1016/j.engstruct.2017.02.052.
  • M. T. Song, Y. H. Gong, J. Yang, W. D. Zhu, and S. Kitipornchai, Free vibration and buckling analyze s of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation, J. Sound Vib., vol. 458, pp. 89–108, 2019. DOI: 10.1016/j.jsv.2019.06.023.
  • Z. X. Zhang, A. R. Liu, J. Yang, and Y. H. Huang, Nonlinear in-plane elastic buckling of a laminated circular shallow arch subjected to a central concentrated load, Int. J. Mech. Sci., vol. 161, no. 105023, pp.105023, 2019.
  • Z. C. Yang, et al., Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches, Eng. Struct., vol. 250, pp. 113243, 2022. DOI: 10.1016/j.engstruct.2021.113243.
  • Y. Wang, C. Feng, J. Yang, D. Zhou, and S. G. Wang, Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method, Comput. Methods Appl. Mech. Eng., vol. 379, pp. 113761, 2021. DOI: 10.1016/j.cma.2021.113761.
  • M. Arefi, E. Mohammad-Rezaei Bidgoli, R. Dimitri, and F. Tornabene, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerosp. Sci. Tech., vol. 81, pp. 108–117, 2018. DOI: 10.1016/j.ast.2018.07.036.
  • Y. Chiker, M. Bachene, M. Guemana, B. Attaf, and S. Rechak, Free vibration analysis of multilayer functionally graded polymer nanocomposite plates reinforced with nonlinearly distributed carbon-based nanofillers using a layer-wise formulation model, Aerosp. Sci. Tech., vol. 104, pp. 105913, 2018.
  • H. L. Wu, J. Zhu, S. Kitipornchai, Q. Wang, L. L. Ke, and J. Yang, Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments, Compos. Struct., vol. 239, pp. 112047, 2020. DOI: 10.1016/j.compstruct.2020.112047.
  • X. G. Huang, J. Yang, and Z. C. Yang, Thermo-elastic analysis of functionally graded graphene nanoplatelets (GPLs) reinforce d close d cylindrical shells, Appl. Math. Model., vol. 97, pp. 754–770, 2021. DOI: 10.1016/j.apm.2021.04.027.
  • M. R. Barati and A. M. Zenkour, Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions, Mech. Adv. Mater. Struct., vol. 26, no. 18, pp. 1580–1588, 2019. DOI: 10.1080/15376494.2018.1444235.
  • M. S. H. Al-Furjan, M. Habibi, F. Ebrahimi, G. J. Chen, M. Safarpour, and H. Safarpour, A coupled thermomechanics approach for frequency information of electrically composite microshell using heat-transfer continuum problem, Eur. Phys. J. Plus., vol. 135, no. 10, pp. 1–45, 2020. DOI: 10.1140/epjp/s13360-020-00764-3.
  • Y. H. Dong, L. W. He, L. Wang, Y. H. Li, and J. Yang, Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study, Aerosp. Sci. Tech., vol. 82–83, pp. 466–478, 2018. DOI: 10.1016/j.ast.2018.09.037.
  • M. Karimiasl, F. Ebrahimi, and V. Mahesh, On nonlinear vibration of sandwiched polymer- CNT/GPL-fiber nanocomposite nanoshells, Thin-Walled Struct., vol. 146, pp. 106431, 2020. DOI: 10.1016/j.tws.2019.106431.
  • V. N. Viet Hoang, N. D. Tien, D. G. Ninh, V. T. Thang, and D. V. Truong, Nonlinear dynamics of functionally graded graphene nanoplatelet reinforced polymer doubly-curved shallow shells resting on elastic foundation using a micromechanical model, J. Sandwich Struct. Mater., vol. 23, pp. 109963622092665, 2020.
  • R. Ansari, J. Torabi, and E. Hasrati, Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells, Thin-Walled Struct., vol. 148, pp. 106594, 2020. DOI: 10.1016/j.tws.2019.106594.
  • M. Safarpour, A. Rahimi, and A. Alibeigloo, Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM, Mech. Base. Des. Struct. Mach., vol. 48, pp. 496–524, 2019.
  • M. T. Song, J. Yang, S. Kitipornchai, and W. D. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates, Int. J. Mech. Sci., vol. 131–132, pp. 345–355, 2017. DOI: 10.1016/j.ijmecsci.2017.07.017.
  • M. T. Song, X. Q. Li, S. Kitipornchai, Q. S. Bi, and J. Yang, Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates, Nonlinear Dyn., vol. 95, no. 3, pp. 2333–2352, 2019. DOI: 10.1007/s11071-018-4695-y.
  • H. L. Wu, J. Yang, and S. Kitipornchai, Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates, Int. J. Mech. Sci., vol. 135, pp. 431–440, 2018. DOI: 10.1016/j.ijmecsci.2017.11.039.
  • R. Gholami and R. Ansari, Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates, Appl. Math. Model., vol. 65, pp. 627–660, 2019. DOI: 10.1016/j.apm.2018.08.038.
  • R. Gholami and R. Ansari, Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates, Compos. Struct., vol. 180, pp. 760–771, 2017. DOI: 10.1016/j.compstruct.2017.08.053.
  • R. Gholami and R. Ansari, Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates, Eng. Struct., vol. 156, pp. 197–209, 2018. DOI: 10.1016/j.engstruct.2017.11.019.
  • J. J. Mao and W. Zhang, Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation, Compos. Struct., vol. 203, pp. 551–565, 2018. DOI: 10.1016/j.compstruct.2018.06.076.
  • J. J. Mao and W. Zhang, Buckling and post-buckling analyzes of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces, Compos. Struct., vol. 216, pp. 392–405, 2019. DOI: 10.1016/j.compstruct.2019.02.095.
  • Y. Wang, Y. X. Zhou, C. Feng, J. Yang, D. Zhou, and S. G. Wang, Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate, Appl. Math. Model., vol. 101, pp. 239–258, 2022. DOI: 10.1016/j.apm.2021.08.003.
  • H. L. Guo, T. Z. Yang, K. K. Zur, and J. N. Reddy, On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets, Thin-Walled Struct., vol. 158, no. 107161, pp. 107161, 2021. DOI: 10.1016/j.tws.2020.107161.
  • M. Ramezani, M. R. Pajand, and F. Tornabene, Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory, Int. J. Non-Linear Mech., vol. 140, pp. 103923, 2022. DOI: 10.1016/j.ijnonlinmec.2022.103923.
  • T. J. R. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, fnite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., vol. 194, no. 39-41, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • C. H. Thai, A. J. M. Ferreira, T. D. Tran, and P. Phung-Van, Free vibration, buckling and bending analyze s of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation, Compos. Struct., vol. 220, pp. 749–759, 2019. DOI: 10.1016/j.compstruct.2019.03.100.
  • C. H. Thai, A. J. M. Ferreira, and P. Phung-Van, Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory, Compos. Part B., vol. 169, pp. 174–188, 2019. DOI: 10.1016/j.compositesb.2019.02.048.
  • C. H. Thai and P. Phung-Van, A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures, Eng. Analy. Bound. Element., vol. 117, pp. 346–358, 2020. DOI: 10.1016/j.enganabound.2020.04.001.
  • C. H. Thai, A. J. M. Ferreira, T. D. Tran, and P. Phung-Van, A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory, Compos. Struct., vol. 234, pp. 111695, 2020. DOI: 10.1016/j.compstruct.2019.111695.
  • P. Phung-Van, Q. X. Lieu, A. J. M. Ferreira, and C. H. Thai, A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates, Thin-Wall. Struct., vol. 164, pp. 107862, 2021. DOI: 10.1016/j.tws.2021.107862.
  • P. Phung-Van, H. Nguyen‑Xuan, and C. H. Thai, Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach, Eng. Comput., pp. 1–10, 2022. DOI: 10.1007/s00366-022-01689-4.
  • L. B. Nguyen, N. V. Nguyen, C. H. Thai, A. J. M. Ferreira, and H. Nguyen-Xuan, An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets, Compos. Struct., vol. 214, pp. 227–245, 2019. DOI: 10.1016/j.compstruct.2019.01.077.
  • P. H. Cong and N. D. Duc, New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment, Acta Mech., vol. 229, no. 9, pp. 3651–3670, 2018. DOI: 10.1007/s00707-018-2178-3.
  • R. M. R. Reddy, W. Karunasena, and W. Lokuge, Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions, Aerosp. Sci. Technol., vol. 78, pp. 147–156, 2018. DOI: 10.1016/j.ast.2018.04.019.
  • B. Wu, A. Pagani, M. Filippi, W. Q. Chen, and E. Carrera, Large-deflection and post-buckling analyses of isotropic rectangular plates by Carrera Unified Formulation, Int. J. Non-Linear. Mech., vol. 116, pp. 18–31, 2019. DOI: 10.1016/j.ijnonlinmec.2019.05.004.
  • A. Alesadi, M. Galehdari, and S. Shojaee, Free vibration and buckling analysis of cross-ply laminated composite plates using Carrera’s unified formulation based on Isogeometric approach, Comput. Struct., vol. 183, pp. 38–47, 2017. DOI: 10.1016/j.compstruc.2017.01.013.
  • A. Alesadi, M. Galehdari, and S. Shojaee, Free vibration and buckling analysis of composite laminated plates using layerwise models based on isogeometric approach and Carrera unified formulation, Mech. Adv. Mater. Struct., vol. 25, no. 12, pp. 1018–1032, 2018. DOI: 10.1080/15376494.2017.1342883.
  • K. Foroutan, E. Carrera, A. Pagani, and H. Ahmadi, Post-buckling and large-deflection analysis of a sandwich FG plate with FG porous core using Carrera’s Unified Formulation, Compos. Struct., vol. 272, pp. 114189, 2021. DOI: 10.1016/j.compstruct.2021.114189.
  • J. L. Mantari, I. A. Ramos, E. Carrera, and M. Petrolo, Static analysis of functionally graded plates using new nonpolynomial displacement fields via Carrera Unified Formulation, Compos. Part B., vol. 89, pp. 127–142, 2016. DOI: 10.1016/j.compositesb.2015.11.025.
  • A. Kumar, S. K. Panda, and R. Kumar, Buckling behavior of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading, Int. J. Mech. Sci., vol. 100, pp. 136–144, 2015. DOI: 10.1016/j.ijmecsci.2015.06.018.
  • B. Adhikari and B. N. Singh, Buckling characteristics of laminated functionally-graded CNT-reinforced composite plate under nonuniform uniaxial and biaxial in-plane edge loads, Int. J. Str. Stab. Dyn., vol. 20, no. 02, pp. 2050022, 2020. DOI: 10.1142/S0219455420500224.
  • P. Jiao, Z. P. Chen, H. Ma, D. L. Zhang, and P. Ge, Buckling analysis of thin rectangular FG-CNTRC plate subjected to arbitrarily distributed partial edge compression loads based on differential quadrature method, Thin-Walled Struct., vol. 145, no. 106417, pp. 106417, 2019. DOI: 10.1016/j.tws.2019.106417.
  • X. W. Wang, and Y. Wang, Buckling analysis of thin rectangular plates under uniaxial or biaxial compressive point loads by the differential quadrature method, Int. J. Mech. Sci., vol. 101–102, pp. 38–48, 2015. DOI: 10.1016/j.ijmecsci.2015.07.021.
  • X. W. Wang, Y. Wang, and L. Y. Ge, Accurate buckling analysis of thin rectangular plates under locally distributed compressive edge stresses, Thin-Walled Struct., vol. 100, pp. 81–92, 2016. DOI: 10.1016/j.tws.2015.12.002.
  • L. S. Ramachandra and S. K. Panda, Dynamic instability of composite plates subjected to non-uniform in-plane loads, J. Sound Vib., vol. 331, no. 1, pp. 53–65, 2012. DOI: 10.1016/j.jsv.2011.08.010.
  • A. V. Lopatin and E. V. Morozov, Buckling of SSCF rectangular orthotropic plate subjected to linearly varying in-plane loading, Compos. Struct., vol. 93, no. 7, pp. 1900–1909, 2011. DOI: 10.1016/j.compstruct.2011.01.024.
  • R. Kumar, S. C. Dutta, and S. K. Panda, Linear and non-linear dynamic instability of functionally graded plate subjected to non-uniform loading, Compos. Struct., vol. 154, pp. 219–230, 2016. DOI: 10.1016/j.compstruct.2016.07.050.
  • O. Mijušković, B. Ćorić, and B. Šćepanović, Exact stress functions implementation in stability analysis of plates with different boundary conditions under uniaxial and biaxial compression, Thin-Wall Struct., vol. 80, pp. 192–206, 2014. DOI: 10.1016/j.tws.2014.03.006.
  • T. N. Nguyen, C. H. Thai, and H. Nguyen-Xuan, On the general framework of high order shear deformation theories for laminated composite plate structures: a novel unified approach, Int. J. Mech. Sci., vol. 110, pp. 242–255, 2016. DOI: 10.1016/j.ijmecsci.2016.01.012.
  • C. H. Thai, A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan, Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur. J. Mech. A/Solids., vol. 43, pp. 89–108, 2014. DOI: 10.1016/j.euromechsol.2013.09.001.
  • A. M. Zenkour, A simple four-unknown refined theory for bending analysis of functionally graded plates, Appl. Math. Model., vol. 37, no. 20–21, pp. 9041–9051, 2013. DOI: 10.1016/j.apm.2013.04.022.
  • M. Karama, K. S. Afaq, and S. Mistou, Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., vol. 40, no. 6, pp. 1525–1546, 2003. DOI: 10.1016/S0020-7683(02)00647-9.
  • O. Mijušković, B. Ćorić, and B. Šćepanović, Accurate buckling loads of plates with different boundary conditions under arbitrary edge compression, Int. J. Mech. Sci., vol. 101–102, pp. 309–323, 2015. DOI: 10.1016/j.ijmecsci.2015.07.017.
  • B. Adhikari, P. Dash, and B. N. Singh, Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory, Compos. Struct., vol. 251, no. 112597, pp. 112597, 2020. DOI: 10.1016/j.compstruct.2020.112597.
  • N. Yamaki, Experiments on the postbuckling behavior of square plates loaded in edge compression, J. Appl. Mech., vol. 28, no. 2, pp. 238–244, 1961. DOI: 10.1115/1.3641660.
  • N. D. Duc and P. H. Cong, Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments, Compos. Struct., vol. 100, pp. 566–574, 2013. DOI: 10.1016/j.compstruct.2013.01.006.
  • A. Yasmin and I. M. Daniel, Mechanical and thermal properties of graphite platelet/epoxy composites, Polymer, vol. 45, no. 24, pp. 8211–8219, 2004. DOI: 10.1016/j.polymer.2004.09.054.
  • S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, NY, 1961.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.