192
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Geometric nonlinear transient analysis of mechanically and thermally shocked functionally graded shell panels

&
Pages 713-733 | Received 14 Jun 2022, Accepted 26 Aug 2022, Published online: 14 Sep 2022

References

  • F. Tornabene, Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Eng., vol. 198, no. 37-40, pp. 2911–2935, 2009. DOI: 10.1016/j.cma.2009.04.011.
  • B. A. Boley, Thermally induced vibrations of beams, J. Aeronaut. Sci., vol. 23, pp. 179–181, 1956. DOI: 10.2514/8.3527.
  • H. Kraus, Thermally induced vibrations of thin nonshallow spherical shells, AIAA J., vol. 4, no. 3, pp. 500–505, 1966. DOI: 10.2514/3.3464.
  • B. A. Boley, Approximate analyses of thermally induced vibrations of beams and plates, J. Appl. Mech., vol. 39, no. 1, pp. 212–216, 1972. DOI: 10.1115/1.3422615.
  • N. D. Jadeja, and T.-C. Loo, Heat induced vibration of a rectangular plate, J. Eng. Ind., vol. 96, no. 3, pp. 1015–1021, 1974. DOI: 10.1115/1.3438401.
  • Y. Nakajo, and K. Hayashi, Response of simply supported and clamped circular plates to thermal impact, J. Sound Vib., vol. 122, no. 2, pp. 347–356, 1988. DOI: 10.1016/S0022-460X(88)80359-6.
  • T. R. Tauchert, Thermal shock of orthotropic rectangular plates, J. Therm. Stress., vol. 12, no. 2, pp. 241–258, 1989. DOI: 10.1080/01495738908961964.
  • S. N. Akour, and J. F. Nayfeh, Thermally induced displacement in simply-supported laminates, Int. J. Str. Stab. Dyn., vol. 05, no. 01, pp. 55–73, 2005. DOI: 10.1142/S0219455405001489.
  • N. N. Huang, and T. R. Tauchert, Thermally induced vibration of doubly curved cross-ply laminated panels, J. Sound Vib., vol. 154, no. 3, pp. 485–494, 1992. DOI: 10.1016/0022-460X(92)90781-R.
  • A. A. Khdeir, Thermally induced vibrations of cross-ply laminated shallow shells, Acta Mech., vol. 151, no. 3–4, pp. 135–147, 2001. DOI: 10.1007/BF01246913.
  • C. C. Hong, Rapid heating induced vibration of a laminated shell with the GDQ method, TOMECHJ, vol. 3, no. 1, pp. 1–5, 2009. DOI: 10.2174/1874158400903010001.
  • D. L. Hill, and J. Mazumdar, A study of the thermally induced large amplitude vibrations of viscoelastic plates and shallow shells, J. Sound Vib., vol. 116, no. 2, pp. 323–337, 1987. DOI: 10.1016/S0022-460X(87)81305-6.
  • N. N. Huang, and T. R. Tauchert, Large-amplitude vibration of graphite-reinforced aluminum cylindrical panels subjected to rapid heating, Compos. Eng., vol. 3, no. 6, pp. 557–566, 1993. DOI: 10.1016/0961-9526(93)90052-L.
  • S. M. Alipour, Y. Kiani, and M. R. Eslami, Rapid heating of FGM rectangular plates, Acta Mech., vol. 227, no. 2, pp. 421–436, 2016. DOI: 10.1007/s00707-015-1461-9.
  • S. Pandey, and S. Pradyumna, A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels, Compos. Struct., vol. 160, pp. 877–886, 2017. DOI: 10.1016/j.compstruct.2016.10.040.
  • S. Pandey, and S. Pradyumna, Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock, J. Therm. Stress., vol. 41, no. 5, pp. 543–567, 2018. DOI: 10.1080/01495739.2017.1422999.
  • A. Entezari, M. Filippi, E. Carrera, and M. A. Kouchakzadeh, 3D-wave propagation in generalized thermoelastic functionally graded disks, Compos. Struct., vol. 206, pp. 941–951, 2018. DOI: 10.1016/j.compstruct.2018.08.053.
  • X. F. Li, X. L. Peng, and Y. A. Kang, Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity, AIAA J., vol. 47, no. 9, pp. 2262–2266, 2009. DOI: 10.2514/1.41995.
  • X. L. Peng, and X. F. Li, Thermoelastic analysis of a cylindrical vessel of functionally graded materials, Int. J. Press. Vessel. Pip., vol. 87, no. 5, pp. 203–210, 2010. DOI: 10.1016/j.ijpvp.2010.03.024.
  • J. Ying, and H. M. Wang, Axisymmetric thermoelastic analysis in a finite hollow cylinder due to nonuniform thermal shock, Int. J. Press. Vessel. Pip., vol. 87, no. 12, pp. 714–720, 2010. DOI: 10.1016/j.ijpvp.2010.10.002.
  • M. Shariyat, M. Khaghani, and S. M. H. Lavasani, Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties, Eur. J. Mech. A./Solids, vol. 29, no. 3, pp. 378–391, 2010. DOI: 10.1016/j.euromechsol.2009.10.007.
  • M. Z. Nejad, M. Abedi, M. H. Lotfian, and M. Ghannad, An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties, J. Mech. Sci. Technol., vol. 26, no. 12, pp. 4081–4087, 2012. DOI: 10.1007/s12206-012-0908-3.
  • P. Malekzadeh, and Y. Heydarpour, Response of functionally graded cylindrical shells under moving thermo-mechanical loads, Thin-Walled Struct., vol. 58, pp. 51–66, 2012. DOI: 10.1016/j.tws.2012.04.010.
  • H. L. Dai, and Y. N. Rao, Nonlinear dynamic behavior of a long temperature-dependent FGM hollow cylinder subjected to thermal shocking, Sci. Eng. Compos. Mater., vol. 21, no. 2, pp. 267–280, 2014. DOI: 10.1515/secm-2012-0072.
  • P. Ayoubi, and A. Alibeigloo, Three-dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical loading, J. Therm. Stress., vol. 40, no. 9, pp. 1166–1183, 2017. DOI: 10.1080/01495739.2017.1325720.
  • J. H. Zhang, G. Z. Li, and S. R. Li, Analysis of transient displacements for a ceramic–metal functionally graded cylindrical shell under dynamic thermal loading, Ceram. Int., vol. 41, no. 9, pp. 12378–12385, 2015. DOI: 10.1016/j.ceramint.2015.06.070.
  • J. H. Zhang, G. Z. Li, S. R. Li, and YBin Ma, DQM-based thermal stresses analysis of a functionally graded cylindrical shell under thermal shock, J. Therm. Stress., vol. 38, no. 9, pp. 959–982, 2015. DOI: 10.1080/01495739.2015.1038488.
  • A. Najibi, and R. Talebitooti, Nonlinear transient thermo-elastic analysis of a 2D-FGM thick hollow finite length cylinder, Compos. Part B. Eng., vol. 111, pp. 211–227, 2017. DOI: 10.1016/j.compositesb.2016.11.055.
  • H. C. Dewangan, N. Sharma, and S. K. Panda, Numerical nonlinear static analysis of cutout-borne multilayered structures and experimental validation, AIAA J., vol. 60, no. 2, pp. 985–997, 2022. DOI: 10.2514/1.J060643.
  • H. C. Dewangan, and S. K. Panda, Large deformation effect on dynamic deflection responses of cutout-borne composite shell panel: an experimental validation, J. Eng. Mech., vol. 148, pp. 1–13, 2022. DOI: 10.1061/(asce)em.1943-7889.0002129.
  • H. C. Dewangan, and S. Panda, Nonlinear thermoelastic numerical frequency analysis and experimental verification of cutout abided laminated shallow shell structure, J. Press. Vessel. Technol., vol. 144, pp. 1–13, 2022. DOI: 10.1115/1.4054843.
  • C. K. Hirwani, S. Tiwari, P. K. Mishra, H. C. Dewangan, and S. K. Panda, Numerical hygrothermal frequency of pre-damage shallow shell panel: A nonlinear FE approach, Waves Random Complex Medium, pp. 1–15, 2022. DOI: 10.1080/17455030.2022.2091181.
  • P. M. Ramteke, and S. K. Panda, Free vibrational behaviour of multi-directional porous functionally graded structures, Arab. J. Sci. Eng., vol. 46, no. 8, pp. 7741–7756, 2021. DOI: 10.1007/s13369-021-05461-6.
  • P. M. Ramteke, S. K. Panda, and B. Patel, Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels, Compos. Struct., vol. 279, pp. 114707, 2022. DOI: 10.1016/j.compstruct.2021.114707.
  • P. M. Ramteke, B. Patel, and S. K. Panda, Nonlinear eigenfrequency prediction of functionally graded porous structure with different grading patterns, Waves Random Complex Media, pp. 1–19, 2021. DOI: 10.1080/17455030.2021.2005850.
  • P. M. Ramteke, V. Kumar, N. Sharma, and S. K. Panda, Geometrical nonlinear numerical frequency prediction of porous functionally graded shell panel under thermal environment, Int. J. Nonlin. Mech., vol. 143, pp. 104041, 2022. DOI: 10.1016/j.ijnonlinmec.2022.104041.
  • P. Malhari Ramteke, K. Panda, and S. Sharma, Nonlinear vibration analysis of multidirectional porous functionally graded panel under thermal environment, AIAA J., pp. 1–11, 2022. DOI: 10.2514/1.j061635.
  • S. E. Ghiasian, Y. Kiani, and M. R. Eslami, Non-linear rapid heating of FGM beams, Int J Nonlin. Mech., vol. 67, pp. 74–84, 2014. DOI: 10.1016/j.ijnonlinmec.2014.08.006.
  • M. Javani, Y. Kiani, and M. R. Eslami, Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches, Aerosp. Sci. Technol., vol. 90, pp. 264–274, 2019. DOI: 10.1016/j.ast.2019.04.049.
  • Y. Kiani, and M. R. Eslami, Geometrically non-linear rapid heating of temperature-dependent circular FGM plates, J. Therm. Stress., vol. 37, no. 12, pp. 1495–1518, 2014. DOI: 10.1080/01495739.2014.937259.
  • M. Javani, Y. Kiani, and M. R. Eslami, Large amplitude thermally induced vibrations of temperature dependent annular FGM plates, Compos. Part B. Eng., vol. 163, pp. 371–383, 2019. DOI: 10.1016/j.compositesb.2018.11.018.
  • Y. L. Yeh, C. K. Chen, and H. Y. Lai, Chaotic and bifurcation dynamics for a simply supported rectangular plate of thermo-mechanical coupling in large deflection, Chaos Solit. Fract., vol. 13, no. 7, pp. 1493–1506, 2002. DOI: 10.1016/S0960-0779(01)00158-8.
  • Y. L. Yeh, Chaotic and bifurcation dynamic behavior of a simply supported rectangular orthotropic plate with thermo-mechanical coupling, Chaos Solit. Fract., vol. 24, no. 5, pp. 1243–1255, 2005. DOI: 10.1016/j.chaos.2004.09.114.
  • Y. X. Hao, W. Zhang, J. Yang, and S. Y. Li, Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermalmechanical loads, J. Mech. Sci. Technol., vol. 25, no. 7, pp. 1637–1646, 2011. DOI: 10.1007/s12206-011-0501-1.
  • K. P. Verma, and D. K. Maiti, Transient analysis of thermo-mechanically shock loaded four-parameter power law functionally graded shells, Compos. Struct., vol. 257, pp. 113388, 2021. DOI: 10.1016/j.compstruct.2020.113388.
  • J. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd ed. Boca Raton: CRC Press, 2007.
  • K. Swaminathan, and D. M. Sangeetha, Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods, Compos. Struct., vol. 160, pp. 43–60, 2017. DOI: 10.1016/j.compstruct.2016.10.047.
  • A. Gupta, and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Prog. Aerosp. Sci., vol. 79, pp. 1–14, 2015. DOI: 10.1016/j.paerosci.2015.07.001.
  • H. Kraus, Thin Elastic Shells, Hoboken, John Wiley & Sons, 1967.
  • J. C. Jaeger, and H. S. Carslaw, Conduction of Heat in Solids, Oxford, Clarendon Press, 1959.
  • H. Kurtaran, Geometrically nonlinear transient analysis of moderately thick laminated composite shallow shells with generalized differential quadrature method, Compos. Struct., vol. 125, pp. 605–614, 2015. DOI: 10.1016/j.compstruct.2015.02.045.
  • J. N. Reddy, and C. D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stress., vol. 21, no. 6, pp. 593–626, 1998. DOI: 10.1080/01495739808956165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.