204
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation, optimization and prediction of the transverse shear modulus of biomimetic 3D printed sandwich core

ORCID Icon & ORCID Icon
Pages 854-868 | Received 04 Apr 2022, Accepted 09 Sep 2022, Published online: 24 Sep 2022

References

  • S. R. Farsani, A. Ramian, R. A. Jafari-Talookolaei, P. S. Valvo, and M. Abedi, Free vibration analysis of rectangular sandwich plates with compressible core and various boundary conditions, J Sandwich Struct. Mater., vol. 23, no. 8, pp. 4077–4106, 2021. DOI: 10.1177/1099636220979276.
  • S. Cheng, P. Qiao, F. Chen, W. Fan, and Z. Zhu, Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory, J. Sandwich Struct. Mater., vol. 18, no. 2, pp. 242–260, 2016. DOI: 10.1177/1099636215619841.
  • M. P. Arunkumar, J. Pitchaimani, and K. V. Gangadharan, Bending and free vibration analysis of foam-filled truss core sandwich panel, J. Sandwich Struct. Mater., vol. 20, no. 5, pp. 617–638, 2018. DOI: 10.1177/1099636216670612.
  • M. Gunasegeran, and PEdwin Sudhagar, Free and forced vibration analysis of 3D printed bioinspired sandwich beam using HSDT: Numerical and experimental study, Polym. Compos., vol. 43, no. 6, pp. 3659–3677, 2022. DOI: 10.1002/pc.26644.
  • M. Gunasegeran, and E. Sudhagar P, Experimental and numerical study of transverse shear modulus for bioinspired glass fiber-reinforced polymer sandwich core, Polym. Compos., vol. 43, no. 5, pp. 2683–2697, 2022. DOI: 10.1002/pc.26566.
  • M. Gunasegeran, and E. Sudhagar P, Investigation of free and forced vibration of GFRP corrugated bio-inspired sandwich beam with HSDT: numerical and experimental study, Mech. Adv. Mater. Struct., vol. 2022, pp. 1–15, 2022. DOI: 10.1080/15376494.2022.2081750.
  • L. Ming, H. Hai, Z. Aimin, S. Yingde, L. Zhao, and Z. Xingguo, Modeling of mechanical properties of as-cast Mg-Li-Al alloys based on PSO-BP algorithm, China Foundry, vol. 9, no. 2, pp. 119–124, 2012.
  • J. Chen, Y. Tang, R. Ge, Q. An, and X. Guo, Reliability design optimization of composite structures based on PSO together with FEA, Chinese J. Aeronaut., vol. 26, no. 2, pp. 343–349, 2013. DOI: 10.1016/j.cja.2013.02.011.
  • S. C. Mohan, D. K. Maiti, and D. Maity, Structural damage assessment using FRF employing particle swarm optimization, Appl. Math. Comput., vol. 219, no. 20, pp. 10387–10400, 2013. DOI: 10.1016/j.amc.2013.04.016.
  • J. Chen, Y. Tang, and X. Huang, Application of surrogate based particle swarm optimization to the reliability-based robust design of composite pressure vessels, Acta Mech. Solida Sin., vol. 26, no. 5, pp. 480–490, 2013. DOI: 10.1016/S0894-9166(13)60043-9.
  • Y. Zhang, D. Gallipoli, and C. Augarde, Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization, Comput. Geotech., vol. 48, pp. 293–303, 2013. DOI: 10.1016/j.compgeo.2012.08.004.
  • C. H. Lee, K. S. Shih, C. C. Hsu, and T. Cho, Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate, Med. Eng. Phys., vol. 36, no. 1, pp. 57–64, 2014. DOI: 10.1016/j.medengphy.2013.09.005.
  • J. J. Lake, A. E. Duwel, and R. N. Candler, Particle swarm optimization for design of slotted MEMS resonators with low thermoelastic dissipation, J. Microelectromech. Syst., vol. 23, no. 2, pp. 364–371, 2014. DOI: 10.1109/JMEMS.2013.2275999.
  • A. R. Vosoughi, and S. Gerist, New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams, Compos. Struct., vol. 118, no. 1, pp. 68–73, 2014. DOI: 10.1016/j.compstruct.2014.07.012.
  • S. L. M. R. Filho, T. A. A. Silva, L. M. G. Vieira, T. H. Panzera, K. Boba, and F. Scarpa, Geometric effects of sustainable auxetic structures integrating the particle swarm optimization and finite element method, Mat. Res., vol. 17, no. 3, pp. 747–757, 2014. DOI: 10.1590/S1516-14392014005000024.
  • P. Kitak, A. Glotic, and I. Ticar, Heat transfer coefficients determination of numerical model by using particle swarm optimization, IEEE Trans. Magn., vol. 50, no. 2, pp. 933–936, 2014. DOI: 10.1109/TMAG.2013.2282409.
  • R. Kalatehjari, A. S. A Rashid, N. Ali, and M. Hajihassani, The contribution of particle swarm optimization to three-dimensional slope stability analysis, Sci. World J., vol. 2014, no. 1, pp. 1–12, 2014. DOI: 10.1155/2014/973093.
  • C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, Detection of transverse cracks in a composite beam using combined features of lamb wave and vibration techniques in ANN environment, Int. J. Smart Sens. Intell. Syst., vol. 1, no. 4, pp. 970–984, 2008. DOI: 10.21307/ijssis-2017-331.
  • M. R. S. Reddy, B. S. Reddy, V. N. Reddy, and S. Sreenivasulu, Prediction of natural frequency of laminated composite plates using artificial neural networks, ENG, vol. 04, no. 06, pp. 329–337, 2012. DOI: 10.4236/eng.2012.46043.
  • M. Chandrasekaran, and D. Devarasiddappa, Artificial neural network modeling for surface roughness prediction in cylindrical grinding of Al-SiCp metal matrix composites and ANOVA analysis, Adv. Prod. Eng. Manage., vol. 9, no. 2, pp. 59–70, 2014. DOI: 10.14743/apem2014.2.176.
  • H. I. Kurt, and M. Oduncuoglu, Application of a neural network model for prediction of wear properties of ultrahigh molecular weight polyethylene composites, Int. J. Polym. Sci., vol. 2015, pp. 1–11, 2015. DOI: 10.1155/2015/315710.
  • D. Chhabra, and S. Kumar, Active vibration control of the smart plate using artificial neural network controller, Adv. Aerosp. Eng., vol. 2015, pp. 1–20, 2015. DOI: 10.1155/2015/137068.
  • S. Dey, T. Mukhopadhyay, A. Spickenheuer, U. Gohs, and S. Adhikari, Uncertainty quantification in natural frequency of composite plates: an artificial neural network based approach, Adv. Compos. Lett., vol. 25, no. 2, pp. 096369351602500, 2016. DOI: 10.1177/096369351602500203.
  • Q. Guo, and S. Wang, Free vibration analysis and optimal design of adhesively bonded double-strap joints by using artificial neural networks, Lat. Am. J. Solids Struct., vol. 17, no. 4, pp. 1–19, 2020. DOI: 10.1590/1679-78255878.
  • X. N. Bui, M. A. Muazu, and H. Nguyen, Optimizing Levenberg–Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis, Eng. Comput., vol. 36, no. 3, pp. 941–952, 2020. DOI: 10.1007/s00366-019-00741-0.
  • R. Suresh, A. G. Joshi, and M. Manjaiah, Experimental investigation on tool wear in AISI H13 die steel turning using RSM and ANN methods, Arab J Sci Eng., vol. 46, no. 3, pp. 2311–2325, 2021. DOI: 10.1007/s13369-020-05038-9.
  • C. W. Schwingshackl, G. S. Aglietti, and P. R. Cunningham, Determination of honeycomb material properties: existing theories and an alternative dynamic approach, J. Aerosp. Eng., vol. 19, no. 3, pp. 177–183, 2006. DOI: 10.1061/(ASCE)0893-1321(2006)19:3(177).
  • F. Mujika, J. Pujana, and M. Olave, On the determination of out-of-plane elastic properties of honeycomb sandwich panels, Polym. Test., vol. 30, no. 2, pp. 222–228, 2011. DOI: 10.1016/j.polymertesting.2010.12.005.
  • D. Hu, Y. Wang, B. Song, L. Dang, and Z. Zhang, Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing, Compos. Part B Eng., vol. 162, no. September 2018, pp. pp. 21–32, 2019. DOI: 10.1016/j.compositesb.2018.10.095.
  • R. Poli, J. Kennedy, and T. Blackwell, Quantification & assessment of the chemical form of residual gadolinium in the brain, Swarm Intell., vol. 1, no. 1, pp. 33–57, 2007. DOI: 10.1007/s11721-007-0002-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.