2,166
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Computational performance evaluation of sacrificial protective walls composed of lightweight concrete blocks: a parametric study of blast loads in a tunnel

, , & ORCID Icon
Pages 880-894 | Received 21 Jul 2022, Accepted 12 Sep 2022, Published online: 23 Sep 2022

References

  • S. Aghdamy, C. Wu, and M. Griffith, Simulation of retrofitted unreinforced concrete masonry unit walls under blast loading, Int. J. Prot. Struct., vol. 4, no. 1, pp. 21–44, 2013. DOI: 10.4324/9781410608536-0.
  • A. K. Tiwari, A. K. Tiwary, and A. Dhiman, Analysis of concrete wall under blast loading, Int. J. Comput. Appl., vol. 2016, no. 7, pp. 975–8887, 2016.
  • Y. Yang, W. Chengqing, L. Zhongxian, D. Jianmei, Z. Hai, X. Shenchun, and Z. Shaoqiang, Protective effect of unbonded prestressed ultra-high performance reinforced concrete slab against gas explosion in buried utility tunnel, Process Saf. Environ. Prot., vol. 149, pp. 370–384, 2021. DOI: 10.1016/j.psep.2020.11.002.
  • T. S. Hattingh, and B. W. Skews, Experimental investigation of the interaction of shock waves with textiles, Shock Waves., vol. 11, no. 2, pp. 115–123, 2001. DOI: 10.1007/PL00004064.
  • A. A. Gubaidullin, A. Britan, and D. N. Dudko, Air shock wave interaction with an obstacle covered by porous material, Shock Waves., vol. 13, no. 1, pp. 41–48, 2003. DOI: 10.1007/s00193-003-0193-2.
  • W. J. Franks, Interaction of a shock wave with a wire screen, UTIA Tech. Note., vol. 13, 1957.
  • A. Britan, A. V. Karpov, E. I. Vasilev, O. Igra, G. Ben-Dor, and E. Shapiro, Experimental and numerical study of shock wave interaction with perforated plates, J. Fluids Eng. Trans. ASME., vol. 126, no. 3, pp. 399–409, 2004. DOI: 10.1115/1.1758264.
  • A. Sasoh, K. Matsuoka, K. Nakashio, E. Timofeev, K. Takayama, P. Voinovich, T. Saito, S. Hirano, S. Ono, and Y. Makino, Attenuation of weak shock waves along pseudo-perforated walls, Shock Waves., vol. 8, no. 3, pp. 149–159, 1998. DOI: 10.1007/s001930050108.
  • A. Britan, O. Igra, G. Ben-Dor, and H. Shapiro, Shock wave attenuation by grids and orifice plates, Shock Waves., vol. 16, no. 1, pp. 1–15, 2006. DOI: 10.1007/s00193-006-0019-0.
  • S. Berger, O. Sadot, and G. Ben-Dor, Experimental investigation on the shock-wave load attenuation by geometrical means, Shock Waves., vol. 20, no. 1, pp. 29–40, 2010. DOI: 10.1007/s00193-009-0237-3.
  • R. Baum, and J. D. Lohner, Numerical simulation of passive shock deflector using an adaptive finite element scheme on unstructured grids, AIAA., vol. 92, pp. 448, 1992.
  • J. E. Karns, D. L. Houghton, B. E. Hall, J. Kim, and K. Lee, Analytical verification of blast testing of steel frame moment connection assemblies, Struct. Eng. Res. Front, pp. 1–19, 2007. DOI: 10.1061/40944(249)71.
  • A. Abe, and K. Takayama, Attenuation of shock waves propagating over arrayed spheres, Proc. SPIE., vol. 4183, pp. 582, 2000.
  • Y. S. Shin, M. Lee, K. Y. Lam, and K. S. Yeo, Modeling mitigation effects of water shield on shock waves, Shock Vib., vol. 5, no. 4, pp. 225–234, 1998. DOI: 10.1155/1998/782032.
  • M. Cheng, K. C. Hung, and O. Y. Chong, Numerical study of water mitigation effects on blast wave, Shock Waves., vol. 14, no. 3, pp. 217–223, 2005. DOI: 10.1007/s00193-005-0267-4.
  • Y. Andreopoulos, S. Xanthos, and K. Subramaniam, Moving shocks through metallic grids: Their interaction and potential for blast wave mitigation, Shock Waves., vol. 16, no. 6, pp. 455–466, 2007. DOI: 10.1007/s00193-007-0082-1.
  • Y. Xia, C. Wu, F. Zhang, Z. X. Li, and T. Bennett, Numerical analysis of foam-protected RC members under blast loads, Int. J. Prot. Struct., vol. 5, no. 4, pp. 367–390, 2014. DOI: 10.1260/2041-4196.5.4.367.
  • M. S. Esa, M. S. Amin, and A. H. Hassan, Study of blast wave mitigation barriers using steel angles with various short/long arrangements, IJSCER., vol. 9, no. 4, pp. 283–288, 2020. DOI: 10.18178/ijscer.9.4.283-288.
  • J. Giordano, G. Jourdan, Y. Burtschell, M. Medale, D. E. Zeitoun, and L. Houas, Shock wave impacts on deforming panel, an application of fluid–structure interaction, Shock Waves., vol. 14, no. 1–2, pp. 103–110, 2005. DOI: 10.1007/s00193-005-0246-9.
  • D. Asprone, A. Prota, G. Manfredi, and A. Nanni, Behavior of full-scale porous GFRP barrier under blast loads, Int. J. Polym. Sci., vol. 2015, pp. 1–11, 2015. DOI: 10.1155/2015/349310.
  • S. Berger, G. Ben-Dor, and O. Sadot, Experimental and numerical investigation of shock wave attenuation by dynamic barriers, J. Fluids Eng. Trans. ASME., vol. 138, no. 3, pp. 1–14, 2016. DOI: 10.1115/1.4031375.
  • S. Berger, G. Ben-Dor, and O. Sadot, Numerical investigation of shock wave attenuation by geometrical means: Double barrier configuration, J. Fluids Eng. Trans. ASME., vol. 137, no. 4, pp. 1–11, 2015. DOI: 10.1115/1.4028875.
  • H. Miura, A. Matsuo, and G. Tabuchi, Numerical investigation for pressure mitigation effects of dike on blast wave, J. Loss Prev. Process Ind., vol. 26, no. 2, pp. 329–337, 2013. DOI: 10.1016/j.jlp.2011.05.013.
  • N. T. Rouse, The mitigation effects of a barrier wall on blast wave pressures, Masters Theses, p. 4998, 2010.
  • Y. Sugiyama, K. Wakabayashi, T. Matsumura, and Y. Nakayama, Effect of a small dike on blast wave propagation, Sci. Technol. Energ. Mater., vol. 76, no. 3–4, pp. 92–97, 2015.
  • A. Ivanov, N. Fassardi, C. Scafidi, T. Shemen, and V. Eliasson, Shock wave attenuation using rigid obstacles with large- and small-scale geometrical features, Multiscale and Multidiscip. Model. Exp. and Des., vol. 2, no. 4, pp. 269–279, 2019. DOI: 10.1007/s41939-019-00053-2.
  • G. Britan, A. Kivity, and Y. Ben-Dor, Passive deflector for attenuating shock waves. In: G. Jagadeesh (eds.), Shock Waves, Univ. Press, Bangalore, India, pp. 1031–1036, 2006.
  • P. Keshavarz, M. M. H. Khalilpur, and H. Parsa, Performance evaluation of water walls under specific loading in closed mineral spaces, 6th International Conference on Researches in Science & Engineering, vol. 6, 2021. https://civilica.com/doc/1407857.
  • P. Keshavarz, M. M. H. Khalilpur, and H. Parsa, Performance evaluation of concrete walls under specific loading, considering physical and mechanical parameters,” 2021. [Online]. https://civilica.com/doc/1257689
  • H. Khalilpur, P. K. Mirzamohammadi, and H. Parsa, Flat steel resistant doors’ optimization by employing inner stiffening profiles in industrial spaces, 6th International Conference on Researches in Science & Engineering., vol. 6, 2021. DOI: https://civilica.com/doc/1407802.
  • M. Aleyaasin, J. J. Harrigan, and S. R. Reid, Air-blast response of cellular material with a face plate: An analytical-numerical approach, Int. J. Mech. Sci., vol. 91, pp. 64–70, 2015. DOI: 10.1016/j.ijmecsci.2014.03.027.
  • M. Groethe, E. Merilo, J. Colton, S. Chiba, Y. Sato, and H. Iwabuchi, Large-scale hydrogen deflagrations and detonations, Int. J. Hydrogen Energy., vol. 32, no. 13, pp. 2125–2133, 2007. DOI: 10.1016/j.ijhydene.2007.04.016.
  • Y. Sugiyama, T. Homae, K. Wakabayashi, T. Matsumura, and Y. Nakayama, Numerical simulations on the attenuation effect of a barrier material on a blast wave, J. Loss Prev. Process Ind., vol. 32, pp. 135–143, 2014. DOI: 10.1016/j.jlp.2014.08.007.
  • R. Hajek, M. Foglar, and J. Fladr, Influence of barrier material and barrier shape on blast wave mitigation, Constr. Build. Mater., vol. 120, pp. 54–64, 2016. DOI: 10.1016/j.conbuildmat.2016.05.078.
  • V. Lawrence, C. Ngamkhanong, and S. Kaewunruen, An investigation to optimize the layout of protective blast barriers using finite element modelling, IOP Conf. Ser.: Mater. Sci. Eng., vol. 280, no. 1, pp. 012035, 2017. DOI: 10.1088/1757-899X/280/1/012035.
  • S. S. Prasanna Kumar, B. S. V. Patnaik, and K. Ramamurthi, Prediction of air blast mitigation in an array of rigid obstacles using smoothed particle hydrodynamics, Phys. Fluids., vol. 30, no. 4, pp. 046105-2–046105-21, 2018. DOI: 10.1063/1.5022198.
  • A. K. Taha, Z. Gao, D. Huang, and M. S. Zahran, Numerical investigation of a new structural configuration of a concrete barrier wall under the effect of blast loads, Int. J. Adv. Struct. Eng., vol. 11, no. s1, pp. 19–34, 2019. DOI: 10.1007/s40091-019-00252-8.
  • A. K. Taha, Z. Gao, H. Dahai, and M. S. Zahran, Response of a new structural ultra-high performance concrete barrier wall subjected to blast loading, Aust. J. Struct. Eng., vol. 21, no. 2, pp. 154–161, 2020. DOI: 10.1080/13287982.2020.1719001.
  • A. T. Tran, D. L. Houghton, J. J. Adams, and J. Karns, “Gusset Plate Connection of Beam To Column,” AU 2013352060 B2, 2013.
  • K. Ohtomo, F. Ohtani, and K. Takayama, Attenuation of shock waves propagating over arrayed baffle plates, Shock Waves., vol. 14, no. 5–6, pp. 379–390, 2005. DOI: 10.1007/s00193-005-0282-5.
  • J. Liu, Y. Qiushi, and W. Jun, Analysis of blast wave propagation inside tunnel, Trans. Tianjin Univ., vol. 15, no. 1, pp. 70–74, 2009. DOI: 10.1007/s12209.
  • H. L. Brode, Numerical solution of spherical blast waves, J. Appl. Physics, Am. Inst. Phys., vol. 26, no. 6, pp. 766–775, 1955. DOI: 10.1063/1.1722085.
  • J. Li, B. Xiaohua, and L. Zhang, Numerical simulation of blast wave propagation in tunnel compared with experiment data, Shanxi Archit., vol. 8, pp. 106–107, 2006.