284
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Exact static axisymmetric solutions of thick functionally graded cylindrical shells with general boundary conditions

ORCID Icon, , ORCID Icon, , &
Pages 990-1005 | Received 09 May 2022, Accepted 22 Sep 2022, Published online: 20 Oct 2022

References

  • D. Punera, and T. Kant, A critical review of stress and vibration analyses of functionally graded shell structures, Compos. Struct., vol. 210, no. FEB, pp. 787–809, 2019. DOI: 10.1016/j.compstruct.2018.11.084.
  • A. Gupta, and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Prog. Aerosp. Sci., vol. 79, pp. 1–14, 2015. DOI: 10.1016/j.paerosci.2015.07.001.
  • R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates, Trans. ASME J. Appl. Mech., vol. 18, no. 1, pp. 31–38, 1951. DOI: 10.1115/1.4010217.
  • J.N. Reddy, and C.F. Liu, A higher-order shear deformation theory of laminated elastic shells, Int. J. Eng. Sci., vol. 23, no. 3, pp. 319–330, 1985. DOI: 10.1016/0020-7225(85)90051-5.
  • J.N. Reddy, and R.A. Arciniega, Shear deformation plate and shell theories: from stavsky to present, Mech. Adv. Mater. Struct., vol. 11, no. 6, pp. 535–582, 2004. DOI: 10.1080/15376490490452777.
  • S.B. Dong, and F.K.W. Tso, On a laminated orthotropic shell theory including transverse shear deformation, Trans. ASME, J. Appl. Mech., vol. 39, no. 4, pp. 1091–1097, 1972. DOI: 10.1115/1.3422834.
  • J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: theory and Analysis, Second edition ed, Boca Raton, FL, CRC Press, 2004. DOI: 10.1201/b12409.
  • M.S. Qatu, E. Asadi, and W. Wang, Review of recent literature on static analyses of composite shells: 2000–2010, OJCM., vol. 02, no. 03, pp. 61–86, 2012. DOI: 10.4236/ojcm.2012.23009.
  • E. Asadi, W. Wang, and M.S. Qatu, Static and vibration analyses of thick deep laminated cylindrical shells using 3D and various shear deformation theories, Compos. Struct., vol. 94, no. 2, pp. 494–500, 2012. DOI: 10.1016/j.compstruct.2011.08.011.
  • J.L. Mantari, A.S. Oktem, and C.G. Soares, Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory, Compos. Struct., vol. 94, no. 1, pp. 37–49, 2011. DOI: 10.1016/j.compstruct.2011.07.020.
  • J.L. Mantari, A.S. Oktem, and C.G. Soares, Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory, Compos.: Part B., vol. 43, no. 8, pp. 3348–3360, 2012. DOI: 10.1016/j.compositesb.2012.01.062.
  • V.V. Zozulya, and C. Zhang, A high order theory for functionally graded axisymmetric cylindrical shells, Int. J. Mech. Sci., vol. 60, no. 1, pp. 12–22, 2012. DOI: 10.1016/j.ijmecsci.2012.04.001.
  • A.S. Sayyad, and Y.M. Ghugal, Static and free vibration analysis of doubly-curved functionally graded material shells, Compos. Struct., vol. 269, pp. 114045, 2021. DOI: 10.1016/j.compstruct.2021.114045.
  • B.M. Shinde, and A.S. Sayyad, A new higher order shear and normal deformation theory for FGM sandwich shells, Compos. Struct., vol. 280, pp. 114865, 2022. DOI: 10.1016/j.compstruct.2021.114865.
  • E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking, Arch. Comput. Methods Eng., vol. 10, no. 3, pp. 215–296, 2003. DOI: 10.1007/BF02736224.
  • E. Carrera, S. Brischetto, M. Cinefra, et al., Refined and advanced models for multilayered plates and shells embedding functionally graded material layers, Mech. Adv. Mater. Struct., vol. 17, no. 8, pp. 603–621, 2010. DOI: 10.1080/15376494.2010.517730.
  • E. Carrera, M. Cinefra, E. Zappino, et al., Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, Chichester, West Sussex, UK, 2014.
  • F. Pang, H. Li, H. Chen, et al., Free vibration analysis of combined composite laminated cylindrical and spherical shells with arbitrary boundary conditions, Mech. Adv. Mater. Struct., vol. 28, no. 2, pp. 182–199, 2021. DOI: 10.1080/15376494.2018.1553258.
  • H. Li, F. Pang, X. Miao, et al., Jacobi-Ritz method for free vibration analysis of uniform and stepped circular cylindrical shells with arbitrary boundary conditions: A unified formulation, Comput. Math. Appl., vol. 77, no. 2, pp. 427–440, 2019. DOI: 10.1016/j.camwa.2018.09.046.
  • H. Li, F. Pang, H. Chen, et al., Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos.: Part B, vol. 164, pp. 249–264, 2019. DOI: 10.1016/j.compositesb.2018.11.046.
  • C.P. Wu, and Y.C. Liu, A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., vol. 147, no. Jul, pp. 1–15, 2016. DOI: 10.1016/j.compstruct.2016.03.031.
  • C.P. Wu, and H.Y. Li, RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions, Compos. Struct., vol. 100, no. Jun, pp. 592–608, 2013. DOI: 10.1016/j.compstruct.2013.01.019.
  • H. Santos, C.M. Mota Soares, C.A. Mota Soares, et al., A semi-analytical finite element model for the analysis of laminated 3D axisymmetric shells: bending, free vibration and buckling, Compos. Struct., vol. 71, no. 3-4, pp. 273–281, 2005. DOI: 10.1016/j.compstruct.2005.09.006.
  • H. Santos, C.M. Mota Soares, C.A. Mota Soares, et al., A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials, Compos. Struct., vol. 91, no. 4, pp. 427–432, 2009. DOI: 10.1016/j.compstruct.2009.04.008.
  • J.C. Monge, and J.L. Mantari, 3D elasticity numerical solution for the static behavior of FGM shells, Eng. Struct., vol. 208, no. 1, pp. 110159, 2020. DOI: 10.1016/j.engstruct.2019.110159.
  • G.M. Kulikov, and S.V. Plotnikova, Solution of static problems for a three-dimensional elastic shell, Dokl. Phys., vol. 56, no. 8, pp. 448–451, 2011. DOI: 10.1134/S1028335811080076.
  • G.M. Kulikov, and S.V. Plotnikova, On the use of a new concept of sampling surfaces in shell theory, Adv. Struct. Mater., vol. 15, pp. 715–726, 2011.
  • G.M. Kulikov, and S.V. Plotnikova, Assessment of the sampling surfaces formulation for thermoelectroelastic analysis of layered and functionally graded piezoelectric shells, Mech. Adv. Mater. Struct., vol. 24, no. 5, pp. 392–409, 2017. DOI: 10.1080/15376494.2016.1191098.
  • G.M. Kulikov, and M.G. Kulikov, High-precision computation in mechanics of composite structures by a strong sampling surfaces formulation: Application to angle-ply laminates with arbitrary boundary conditions, Compos. Struct., vol. 267, no. 3, pp. 113887, 2021. DOI: 10.1016/j.compstruct.2021.113887.
  • M. Tahani, A. Andakhshideh, and S. Maleki, Interlaminar stresses in thick cylindrical shell with arbitrary laminations and boundary conditions under transverse loads, Compos.: Part B, Engineering., vol. 98, pp. 151–165, 2016. DOI: 10.1016/j.compositesb.2016.05.013.
  • I. Ahmadi, A three-dimensional formulation for Levy-type transversely loaded cross-ply shell panels, Int. J. Mech. Sci., vol. 167, pp. 105224, 2020. DOI: 10.1016/j.ijmecsci.2019.105224.
  • G. Jin, S. Zhu, S. Shi, et al., Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions, Compos. Struct., vol. 108, pp. 565–577, 2014. DOI: 10.1016/j.compstruct.2013.09.051.
  • T. Ye, G. Jin, S. Shi, et al., Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations, Int. J. Mech. Sci., vol. 84, pp. 120–137, 2014. DOI: 10.1016/j.ijmecsci.2014.04.017.
  • C.P. Wu, and H. Chen, Exact solutions of free vibration of simply supported functionally graded piezoelectric sandwich cylinders using a modified Pagano method, J. Sandwich Struct. Mater., vol. 15, no. 2, pp. 229–257, 2013. DOI: 10.1177/1099636212471357.
  • J.R. Fan, Exact Theory of Thick Laminated Plates and Shells, Science Press, Beijing, 1998. (in Chinese)
  • K.W. Ding, and L.M. Tang, Exact solution for axisymmetric thick laminated shells, Compos. Struct., vol. 46, no. 2, pp. 125–129, 1999. DOI: 10.1016/S0263-8223(99)00047-1.
  • W.Q. Chen, and Y.L. Kang, State-space approach for statics and dynamics of angle-ply laminated cylindrical panels in cylindrical bending, Int. J. Mech. Sci., vol. 47, no. 3, pp. 374–387, 2005. DOI: 10.1016/j.ijmecsci.2005.01.009.
  • W.Q. Chen, Z.G. Bian, and H.J. Ding, Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells, Int. J. Mech. Sci., vol. 46, no. 1, pp. 159–171, 2004. DOI: 10.1016/j.ijmecsci.2003.12.005.
  • W.Q. Chen, Y.F. Wang, J.B. Cai, and G.R. Ye, Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces, Int. J. Solids Struct., vol. 41, no. 9-10, pp. 2429–2446, 2004. DOI: 10.1016/j.ijsolstr.2003.12.018.
  • C.P. Wu, Y.S. Syu, and J.Y. Lo, Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach, Int. J. Mech. Sci., vol. 49, no. 6, pp. 669–689, 2007. DOI: 10.1016/j.ijmecsci.2006.11.002.
  • S. Brischetto, A general exact elastic shell solution for bending analysis of functionally graded structures, Compos. Struct., vol. 175, pp. 70–85, 2017. DOI: 10.1016/j.compstruct.2017.04.002.
  • S. Brischetto, Exact three-dimensional static analysis of single- and multi-layered plates and shells, Compos.Part B: Eng., vol. 119, pp. 230–252, 2017. DOI: 10.1016/j.compositesb.2017.03.010.
  • S. Brischetto, A 3D layer-wise model for the correct imposition of transverse shear/normal load conditions in FGM shells, Int. J. Mech. Sci., vol. 136, pp. 50–66, 2018. DOI: 10.1016/j.ijmecsci.2017.12.013.
  • H.Y. Sheng, and J.Q. Ye, A three-dimensional state space finite element solution for laminated composite cylindrical shells, Comput. Methods Appl. Mech. Eng., vol. 192, no. 22–24, pp. 2441–2459, 2003. DOI: 10.1016/S0045-7825(03)00265-2.
  • W.B. Ye, J. Liu, Q.S. Zang, et al., Magneto-electro-elastic semi-analytical models for free vibration and transient dynamic responses of composite cylindrical shell structures, Mech. Mater., vol. 148, pp. 103495–103414, 2020. DOI: 10.1016/j.mechmat.2020.103495.
  • C.P. Wu, and R.Y. Jiang, A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges, Compos. Struct., vol. 94, no. 11, pp. 3401–3420, 2012. DOI: 10.1016/j.compstruct.2012.05.005.
  • K.M. Liew, X. Zhao, and A. Ferreira, A review of meshless methods for laminated and functionally graded plates and shells, Compos. Struct., vol. 93, no. 8, pp. 2031–2041, 2011. DOI: 10.1016/j.compstruct.2011.02.018.
  • W.Q. Chen, and C.F. Lü, 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported, Compos. Struct., vol. 69, no. 1, pp. 77–87, 2005. DOI: 10.1016/j.compstruct.2004.05.015.
  • C.F. Lü, Z.Y. Huang, and W.Q. Chen, Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending, J. Sound Vibr., vol. 304, no. 3–5, pp. 987–995, 2007. DOI: 10.1016/j.jsv.2007.03.023.
  • A. Alibeigloo, Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method, Int. J. Pressure Vessels Piping, vol. 86, no. 11, pp. 738–747, 2009. DOI: 10.1016/j.ijpvp.2009.07.002.
  • A. Alibeigloo, and V. Nouri, Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method, Compos. Struct., vol. 92, no. 8, pp. 1775–1785, 2010. DOI: 10.1016/j.compstruct.2010.02.004.
  • A. Alibeigloo, and P.N.A. Rajaee, Static and free vibration analysis of sandwich cylindrical shell based on theory of elasticity and using DQM, Acta Mech., vol. 228, no. 12, pp. 4123–4140, 2017. DOI: 10.1007/s00707-017-1914-4.
  • A.A. Parand, and A. Alibeigloo, Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM, Compos. Part B., vol. 126, pp. 1–16, 2017. DOI: 10.1016/j.compositesb.2017.05.071.
  • X. Liang, H.L. Kou, G.H. Liu, et al., A semi-analytical state-space approach for 3D transient analysis of functionally graded material cylindrical shells, J. Zhejiang Univ. Sci. A, vol. 16, no. 7, pp. 525–540, 2015. DOI: 10.1631/jzus.A1500016.
  • B. Tong, Y. Li, X. Zhu, et al., Three-dimensional vibration analysis of arbitrary angle-ply laminated cylindrical shells using differential quadrature method, Appl. Acoust., vol. 146, pp. 390–397, 2019. DOI: 10.1016/j.apacoust.2018.11.031.
  • J.R. Fan, and K.W. Ding, Exact solution for thick laminated closed cylindrical shells with two clamped edges, Appl. Math. Modell., vol. 17, no. 12, pp. 632–641, 1993. DOI: 10.1016/0307-904X(93)90073-P.
  • H. Sheng, and R.Y. Gao, Thermal stress analysis for a thick laminated cylinder with two clamped edges under non-uniform temperature variation, Eng. Mech., vol. 17, no. 4, pp. 117–123, 2000. (in Chinese)
  • Y. Liu, Q. Chen, and G. Qing, Analytical solution for laminated piezoelectric cylindrical open shells with clamped edges, J. Mech. Strength, vol. 32, no. 6, pp. 82–88, 2010. (in Chinese)
  • P. Kumari, and S. Kar, Static behavior of arbitrarily supported composite laminated cylindrical shell panels: An analytical 3D elasticity approach, Compos. Struct., vol. 207, pp. 949–965, 2019. DOI: 10.1016/j.compstruct.2018.09.035.
  • W. Hu, and Y. Liu, A new state space solution for rectangular thick laminates with clamped edges, Chin. J. Theor. Appl. Mech., vol. 47, no. 5, pp. 762–771, 2015. (in Chinese)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.