215
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Adjustable mechanical properties design of microstructure by using generative and adversarial network with gradient penalty

, ORCID Icon, &
Pages 1059-1070 | Received 18 Apr 2022, Accepted 22 Sep 2022, Published online: 10 Oct 2022

References

  • H. Yu, et al., Drastic tailorable thermal expansion chiral planar and cylindrical shell structures explored with finite element simulation, Compos. Struct., vol. 210, pp. 327–338, 2019. DOI: 10.1016/j.compstruct.2018.11.043.
  • Y. Yao, Y. Ni, and L. H. He, Rutile-mimic 3D metamaterials with simultaneously negative Poisson’s ratio and negative compressibility, Mater. Des., vol. 200, pp. 109440, 2021. DOI: 10.1016/j.matdes.2020.109440.
  • L. Ai, and X. L. Gao, An analytical model for star-shaped re-entrant lattice structures with the orthotropic symmetry and negative Poisson’s ratios, Int. J. Mech. Sci., vol. 145, pp. 158–170, 2018. DOI: 10.1016/j.ijmecsci.2018.06.027.
  • L. Bai, et al., Mechanical properties and energy absorption capabilities of functionally graded lattice structures: experiments and simulations, Int. J. Mech. Sci., vol. 182, pp. 105735, 2020. DOI: 10.1016/j.ijmecsci.2020.105735.
  • Y. Chen, D. Wang, and L. Ma, Vibration and damping performance of carbon fiber-reinforced polymer 3D double-arrow-head auxetic metamaterials, J. Mater. Sci., vol. 56, no. 2, pp. 1443–1460, 2021. DOI: 10.1007/s10853-020-05366-z.
  • U. G. K. Wegst, et al., Bioinspired structural materials, Nat. Mater., vol. 14, no. 1, pp. 23–36, 2015. DOI: 10.1038/nmat4089.
  • O. Sigmund, A 99 line topology optimization code written in Matlab, Struct. Multidisc. Optim., vol. 21, no. 2, pp. 120–127, 2001. DOI: 10.1007/s001580050176.
  • E. Andreassen, et al., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidisc. Optim., vol. 43, no. 1, pp. 1–16, 2011. DOI: 10.1007/s00158-010-0594-7.
  • L. Xia, et al., Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Eng., vol. 333, pp. 356–370, 2018. DOI: 10.1016/j.cma.2018.01.035.
  • Y. Li, and Y. M. Xie, Evolutionary topology optimization for structures made of multiple materials with different properties in tension and compression, Compos. Struct., vol. 259, pp. 113497, 2021. DOI: 10.1016/j.compstruct.2020.113497.
  • J. Tang, Y. M. Xie, and P. Felicetti, Topology optimization of building structures considering wind loading, AMM., vol. 166–169, pp. 405–408, 2012. DOI: 10.4028/www.scientific.net/AMM.166-169.405.
  • X. Guo, et al., Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl Mech Eng., vol. 310, pp. 711–748, 2016. DOI: 10.1016/j.cma.2016.07.018.
  • W. Zhang, et al., Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl Mech Eng., vol. 311, pp. 327–355, 2016. DOI: 10.1016/j.cma.2016.08.022.
  • H. Ye, et al., Acceleration design for continuum topology optimization by using Pix2pix Neural network, Int. J. Appl. Mech., vol. 13, no. 04, pp. 2150042, 2021. DOI: 10.1142/S1758825121500423.
  • H. Ye, et al., Geometrically nonlinear topology optimization of continuum structures based on an independent continuous mapping method, Acta Mech. Solida Sin., vol. 34, no. 5, pp. 658–672, 2021. DOI: 10.1007/s10338-021-00229-9.
  • H. L. Ye, X. Zhang, and N. Wei, Topology optimization design of adjustable thermal expansion metamaterial based on independent continuous variables, Int. J. Appl. Mech., vol. 13, no. 03, pp. 2150032, 2021. DOI: 10.1142/S1758825121500320.
  • O. Sigmund, and S. Torquato, Design of materials with extreme thermal expansion using a three-phase topology optimization method, Int. Soc. Opt. Photon., 1997.
  • B. Xu, et al., Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness, Compos. Struct., vol. 150, pp. 84–102, 2016. DOI: 10.1016/j.compstruct.2016.04.038.
  • X. Huang, A. Radman, and Y. M. Xie, Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., vol. 50, no. 6, pp. 1861–1870, 2011. DOI: 10.1016/j.commatsci.2011.01.030.
  • X. Zhang, et al., Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap, Mater. Des., vol. 209, pp. 109990, 2021. DOI: 10.1016/j.matdes.2021.109990.
  • G. E. Hinton, S. Osindero, and Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006. DOI: 10.1162/neco.2006.18.7.1527.
  • G. E. Hinton, et al., Reducing the dimensionality of data with neural networks, Science., vol. 313, no. 5786, pp. 504–507, 2006. DOI: 10.1126/science.1127647.
  • Z. Yang, et al., End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures, J. Mech. Phys. Solids., vol. 154, pp. 104506, 2021. DOI: 10.1016/j.jmps.2021.104506.
  • G. Ammasai Sengodan, Prediction of two-phase composite microstructure properties through deep learning of reduced dimensional structure-response data, Compos. Part B: Eng., vol. 225, pp. 109282, 2021. DOI: 10.1016/j.compositesb.2021.109282.
  • Rajeev Ranjan, et al., Deep learning for understanding faces: machines may be just as good, or better, than humans, IEEE Signal Process. Mag., vol. 35, no. 1, pp. 66–83, 2018. DOI: 10.1109/MSP.2017.2764116.
  • A. K. Shekar, G. Liang, R. Liu, and A. Wendt, Label-free robustness estimation of object detection CNNs for autonomous driving applications, Int. J. Comput. Vis., vol. 129, no. 4, pp. 1185–1201, 2021. DOI: 10.1007/s11263-020-01423-x.
  • L. Zhao, Z. Wang, X. Wang, Y. Qi, Q. Liu, and G. Zhang, Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning, J. Electron. Imaging., vol. 25, no. 5, pp. 053024, 2016. DOI: 10.1117/1.JEI.25.5.053024.
  • P. Hoseini, L. Zhao, and A. Shehu, Generative deep learning for macromolecular structure and dynamics, Curr. Opin. Struct. Biol., vol. 67, pp. 170–177, 2021. DOI: 10.1016/j.sbi.2020.11.012.
  • Sangeun Oh, Yongsu Jung, Seongsin Kim, Ikjin Lee, and Namwoo Kang, Deep generative design: integration of topology optimization and generative models, J. Mech. Des., vol. 141, no. 11, pp. 1, 2019. DOI: 10.1115/1.4044229.
  • M. Li, G. Jia, Z. Cheng, and Z. Shi, Generative adversarial network guided topology optimization of periodic structures via subset simulation, Compos. Struct., vol. 260, no. 13, pp. 113254, 2021. DOI: 10.1016/j.compstruct.2020.113254.
  • R. K. Tan, N. L. Zhang, and W. Ye, A deep learning–based method for the design of microstructural materials, Struct. Multidisc. Optim., vol. 61, no. 4, pp. 1417–1438, 2020. DOI: 10.1007/s00158-019-02424-2.
  • Zhongwei Zhao, Song Zhou, Chenyang Zheng, and Lumeng Tang, Predictions of compression capacity of randomly corroded WHSJs based on artificial neural network, Mech. Adv. Mater. Struct., vol. 29, no. 15, pp. 2156–2164, 2022. DOI: 10.1080/15376494.2020.1852457.
  • W. Weng, and X. Zhu, INet: Convolutional networks for biomedical image segmentation, IEEE Access., vol. 9, pp. 16591–16603, 2021. DOI: 10.1109/ACCESS.2021.3053408.
  • I. Goodfellow, et al., Generative adversarial nets, Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, 2014. pp. 2672–2680. https://doi.org/10.5555/2969033.2969125
  • M. Mehdi, and O. Simon, Conditional generative adversarial nets, arXiv Preprint 2014, arXiv:1411.1784.,
  • M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, arXiv Preprint 2017, arXiv:1701.07875.,
  • I. Sosnovik, and I. Oseledets, Neural networks for topology optimization. arXiv Preprint 2017, arXiv:1709.09578.
  • Yonggyun Yu, Taeil Hur, Jaeho Jung, and In Gwun Jang, Deep learning for determining a near-optimal topological design without any iteration, Struct Multidisc Optim., vol. 59, no. 3, pp. 787–799, 2019. DOI: 10.1007/s00158-018-2101-5.
  • H. T. Kollmann, Deep learning for topology optimization of 2D metamaterials. Mater. Des., vol. 196, pp. 109098, 2020.
  • S. Rawat, and M. Shen, A novel topology design approach using an integrated deep learning network architecture, 2018.
  • Qiyin Lin, Jun Hong, Zheng Liu, Baotong Li, and Jihong Wang, Investigation into the topology optimization for conductive heat transfer based on deep learning approach, Int. Commun. Heat Mass Transfer., vol. 97, pp. 103–109, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.07.001.
  • Baotong Li, Congjia Huang, Xin Li, Shuai Zheng, and Jun Hong, Non-iterative structural topology optimization using deep learning, Comput-Aided. Des., vol. 115, pp. 172–180, 2019. DOI: 10.1016/j.cad.2019.05.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.