127
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic characteristics of composite damping sandwich open conical shell

, , , &
Pages 1152-1166 | Received 21 Jul 2022, Accepted 01 Oct 2022, Published online: 14 Oct 2022

References

  • H. Seilsepour, M. Zarastvand, and R. Talebitooti, Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core, J. Vib. Control, pp. 107754632110567, 2022. DOI: 10.1177/10775463211056758.
  • K. Rahmatnezhad, M. R. Zarastvand, and R. Talebitooti, Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature, Compos. Struct., vol. 276, pp. 114557, 2021. DOI: 10.1016/j.compstruct.2021.114557.
  • M. R. Zarastvand, M. H. Asadijafari, and R. Talebitooti, Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature, Compos. Struct., vol. 292, pp. 115688, 2022. DOI: 10.1016/j.compstruct.2022.115688.
  • M. R. Zarastvand, M. H. Asadijafari, and R. Talebitooti, Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation, Aerosp. Sci. Technol., vol. 112, pp. 106620–106620, 2021. DOI: 10.1016/j.ast.2021.106620.
  • M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, Prediction of acoustic wave transmission features of the multilayered plate constructions: A review, J. Sandwich Struct. Mater., vol. 24, no. 1, pp. 218–293, 2022. DOI: 10.1177/1099636221993891.
  • Mi Peng, Numerical Simulation and Experimental Research on Dynamic Performance of Embedded and Co-Cured Composite Damping Structure, Qingdao: Qingdao Technological University, 2011.
  • W. Ling, L. Sen, Y. Shengyu, et al., Investigate on impact resistance of rubber aramid fiber composites, Compos. Sci. Eng., vol. 2, pp. 69–75, 2020.
  • D. K. Rao, Frequency and loss factors of sandwich beams under various boundary conditions, J. Mech. Eng. Sci., vol. 20, no. 5, pp. 271–282, 1978. DOI: 10.1243/JMES_JOUR_1978_020_047_02.
  • M. Rezaiee-Pajand, E. Arabi, and A. R. Masoodi, Nonlinear analysis of FG-sandwich plates and shells, Aerosp. Sci. Technol., vol. 87, pp. 178–189, 2019. DOI: 10.1016/j.ast.2019.02.017.
  • X. Yao, D. Tang, F. Pang, et al., Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix, J. Zhejiang Univ. Sci. A., vol. 17, no. 4, pp. 295–316, 2016. DOI: 10.1631/jzus.A1500191.
  • Y. Zhai, M. Chai, J. Su, et al., Dynamics properties of composite sandwich open circular cylindrical shells, Compos. Struct., vol. 189, pp. 148–159, 2018. DOI: 10.1016/j.compstruct.2018.01.076.
  • M. Mokhtari, M. R. Permoon, and H. Haddadpour, Dynamic analysis of isotropic sandwich cylindrical shell with fractional viscoelastic core using Rayleigh–Ritz method, Compos. Struct., vol. 186, pp. 165–174, 2018. DOI: 10.1016/j.compstruct.2017.10.039.
  • N. S. Bardell, J. M. Dunsdon, and R. S. Langley, Free vibration of thin, isotropic, open, conical panels, J. Sound Vib., vol. 217, no. 2, pp. 297–320, 1998. DOI: 10.1006/jsvi.1998.1761.
  • K. K. Viswanathan, and P. V. Navaneethakrishnan, Free vibration of layered truncated conical shell frusta of differently varying thickness by the method of collocation with cubic and quintic splines, Int. J. Solids Struct., vol. 42, no. 3–4, pp. 1129–1150, 2005. DOI: 10.1016/j.ijsolstr.2004.06.065.
  • K. K. Viswanathan, S. Javed, K. Prabakar, et al., Free vibration of anti-symmetric angle-ply laminated conical shells, Compos. Struct., vol. 122, pp. 488–495, 2015. DOI: 10.1016/j.compstruct.2014.11.075.
  • S. Liang, H. L. Chen, T. Chen, et al., The natural vibration of a symmetric cross-ply laminated composite conical-plate shell, Compos. Struct., vol. 80, no. 2, pp. 265–278, 2007. DOI: 10.1016/j.compstruct.2006.05.014.
  • X. Xiang, J. Guoyong, L. Wanyou, et al., A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures, Compos. Struct., vol. 111, pp. 20–30, 2014. DOI: 10.1016/j.compstruct.2013.12.019.
  • T. Y. Ng, H. Li, and K. Y. Lam, Generalized deferential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions, Int. J. Mech. Sci., vol. 45, no. 3, pp. 567–587, 2003. DOI: 10.1016/S0020-7403(03)00042-0.
  • M. Rezaiee-Pajand, E. Sobhani, and A. R. Masoodi, Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method, Aerosp. Sci. Technol., vol. 105, pp. 105998, 2020. DOI: 10.1016/j.ast.2020.105998.
  • A. H. Sofiyev, Large-amplitude vibration of non-homogeneous orthotropic composite truncated conical shell, Compos. Part B Eng., vol. 61, pp. 365–374, 2014. DOI: 10.1016/j.compositesb.2013.06.040.
  • A. H. Sofiyev, and N. Kuruoglu, On a problem of the vibration of functionally graded conical shells with mixed boundary conditions, Compos. Part B Eng., vol. 70, pp. 122–130, 2015. DOI: 10.1016/j.compositesb.2014.10.047.
  • T. Ye, G. Jin, Z. Su, et al., A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions, Arch. Appl. Mech., vol. 84, no. 4, pp. 441–471, 2014. DOI: 10.1007/s00419-013-0810-1.
  • T. Ye, G. Jin, Y. Chen, et al., A unified formulation for vibration analysis of open shells with arbitrary boundary conditions, Int. J. Mech. Sci., vol. 81, pp. 42–59, 2014. DOI: 10.1016/j.ijmecsci.2014.02.002.
  • Ö. Civalek, Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach, J. Comput. Appl. Math., vol. 205, no. 1, pp. 251–271, 2007. DOI: 10.1016/j.cam.2006.05.001.
  • H. Ersoy, K. Mercan, and Ö. Civalek, Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods, Compos. Struct., vol. 183, pp. 7–20, 2018. DOI: 10.1016/j.compstruct.2016.11.051.
  • Ö. Civalek, Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory, Compos. Part B Eng., vol. 45, no. 1, pp. 1001–1009, 2013. DOI: 10.1016/j.compositesb.2012.05.018.
  • F. Tornabene, Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution, Comput. Methods Appl. Mech. Eng., vol. 198, no. 37–40, pp. 2911–2935, 2009. DOI: 10.1016/j.cma.2009.04.011.
  • K. Daneshjou, M. Talebitooti, and R. Talebitoot, Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method, Appl. Math. Mech.-Engl. Ed., vol. 34, no. 4, pp. 437–456, 2013. DOI: 10.1007/s10483-013-1682-8.
  • H. Zeighampour, Y. Tadi Beni, and F. Mehralian, A shear deformable conical shell formulation in the framework of couple stress theory, Acta Mech., vol. 226, no. 8, pp. 2607–2629, 2015. DOI: 10.1007/s00707-015-1318-2.
  • H. Zeighampour, and Y. T. Beni, Analysis of conical shells in the framework of coupled stresses theory, Int. J. Eng. Sci., vol. 81, pp. 107–122, 2014. DOI: 10.1016/j.ijengsci.2014.04.008.
  • K. N. Khatri, and N. T. Asnani, Vibration and damping analysis of fiber reinforced composite material conical shells, J. Sound Vib., vol. 193, no. 3, pp. 581–595, 1996. DOI: 10.1006/jsvi.1996.0303.
  • X. T. Cao, Z. Y. Zhang, and H. X. Hua, Free vibration of circular cylindrical shell with constrained layer damping, Appl. Math. Mech.-Engl. Ed., vol. 32, no. 4, pp. 495–506, 2011. DOI: 10.1007/s10483-011-1433-7.
  • M. R. Permoon, M. Shakouri, and H. Haddadpour, Free vibration analysis of sandwich conical shells with fractional viscoelastic core, Compos. Struct., vol. 214, pp. 62–72, 2019. DOI: 10.1016/j.compstruct.2019.01.082.
  • M. A. Kouchakzadeh, and M. Shakouri, Free vibration analysis of joined cross-ply laminated conical shells, Int. J. Mech. Sci., vol. 78, pp. 118–125, 2014. DOI: 10.1016/j.ijmecsci.2013.11.008.
  • E. Sobhani, A. R. Masoodi, O. Civalek, and A. R. Ahmadi-Pari, Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells, Aerosp. Sci. Technol., vol. 120, pp. 107257, 2022. DOI: 10.1016/j.ast.2021.107257.
  • E. Sobhani, A. R. Masoodi, and O. Civalek, On vibrational-based numerical simulation of a jet engine cowl shell-like structure, Mech. Adv. Mater. Struct., vol. 2022, pp. 1–12, 2022. DOI: 10.1080/15376494.2022.2087241.
  • E. Sobhani, A. R. Masoodi, and A. R. Ahmadi-Pari, Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell, Compos. Struct., vol. 273, pp. 114281–114304, 2021. DOI: 10.1016/j.compstruct.2021.114281.
  • H. Li, Z. Li, Z. Xiao, et al., Vibro-impact response of FRP sandwich plates with a foam core reinforced by chopped fiber rods, Compos. Part B Eng., vol. 242, pp. 110077, 2022. DOI: 10.1016/j.compositesb.2022.110077.
  • H. Li, H. Lv, J. Gu, et al., Nonlinear vibration characteristics of fibre reinforced composite cylindrical shells in thermal environment, Mech. Syst. Sig. Process., vol. 156, pp. 107665, 2021. DOI: 10.1016/j.ymssp.2021.107665.
  • W. Guanghe, L. Sen, Z. Yunfa, et al., Vibration analysis of the embedded co-curing damping composite ring-opening stiffened cylindrical shells, Compos. Sci. Eng., vol. 2, pp. 54–61, 2020.
  • L. Qinghe, L. Sen, Z. Yunfa, et al., Vibration characteristics analysis and numerical simulation for stiffened plates with damping core composite, J. Vib. Shock, vol. 39, no. 5, pp. 250–261, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.