480
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Origami-inspired structures with programmable multi-step deformation

, , , , , & show all
Pages 1182-1197 | Received 03 Jun 2022, Accepted 02 Oct 2022, Published online: 18 Oct 2022

References

  • F. Guenneau, et al., Origami with negative refractive index to generate super-lenses, J. Phys. Condens. Matter., vol. 26, no. 40, p. 405303, 2014. DOI: 10.1088/0953-8984/26/40/405303.
  • Z. Wang, et al., Origami-based reconfigurable metamaterials for tunable chirality, Adv. Mater., vol. 29, no. 27, p. 1700412, 2017. DOI: 10.1002/adma.201700412.
  • M. Eidini and G. H. Paulino, Unraveling metamaterial properties in zigzag-base folded sheets, Sci. Adv., vol. 1, no. 8, p. e1500224, 2015. DOI: 10.1126/sciadv.1500224.
  • Y. L. He, et al., Programming mechanical metamaterials using origami tessellations, Compos. Sci. Technol., vol. 189, pp. 108015, 2020. DOI: 10.1016/j.compscitech.2020.108015.
  • S. Kamrava, et al., Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties, Sci. Rep., vol. 7, p. 46046, 2017.
  • C. Lv, et al., Origami based mechanical metamaterials, Sci. Rep., vol. 4, p. 5979, 2014.
  • M. Schenk and S. D. Guest, Geometry of Miura-folded metamaterials, Proc. Natl. Acad. Sci. U.S.A., vol. 110, no. 9, pp. 3276–3281, 2013. DOI: 10.1073/pnas.1217998110.
  • Z. Y. Wei, et al., Geometric mechanics of periodic pleated origami, Phys. Rev. Lett., vol. 110, no. 21, p. 215501, 2013. DOI: 10.1103/PhysRevLett.110.215501.
  • E. Boatti, N. Vasios, and K. Bertoldi, Origami metamaterials for tunable thermal expansion, Adv. Mater., vol. 29, no. 26, p. 1700360, 2017. DOI: 10.1002/adma.201700360.
  • S. Li, H. Fang, and K. W. Wang, Recoverable and programmable collapse from folding pressurized origami cellular solids, Phys. Rev. Lett., vol. 117, no. 11, p. 114301, 2016. DOI: 10.1103/PhysRevLett.117.114301.
  • M. B. Pinson, et al., Self-folding origami at any energy scale, Nat. Commun., vol. 8, p. 15477, 2017.
  • H. Fang, et al., Programmable self-locking origami mechanical metamaterials, Adv. Mater., vol. 30, no. 15, p. e1706311, 2018. DOI: 10.1002/adma.201706311.
  • P. Zhang, et al., The mechanical behavior of polyline crease origami self-locking structure under quasi-static compressive loading, Math. Probl. Eng., vol. 2022, pp. 1–16, 2022.
  • H. Fang, et al., Dynamics of a bistable Miura-origami structure, Phys. Rev. E., vol. 95, no. 5-1, p. 052211, 2017. DOI: 10.1103/PhysRevE.95.052211.
  • A. Iniguez-Rabago, Y. Li, and J. T. B. Overvelde, Exploring multistability in prismatic metamaterials through local actuation, Nat. Commun., vol. 10, no. 1, p. 5577, 2019. DOI: 10.1038/s41467-019-13319-7.
  • J. T. Overvelde, et al., Rational design of reconfigurable prismatic architected materials, Nature, vol. 541, no. 7637, pp. 347–352, 2017. DOI: 10.1038/nature20824.
  • G. Park, S. Sengupta, and S. Li, Multi-stability and variable stiffness of cellular solids designed based on origami patterns, Proc. SPIE 10164, Active and Passive Smart Structures and Integrated Systems 2017, p. 1016426, 2017. DOI: 10.1117/12.2257499.
  • H. Yasuda and J. Yang, Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability, Phys. Rev. Lett., vol. 114, no. 18, p. 185502, 2015. DOI: 10.1103/PhysRevLett.114.185502.
  • E. T. Filipov, T. Tachi, and G. H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials, Proc. Natl. Acad. Sci. U.S.A., vol. 112, no. 40, pp. 12321–12326, 2015. DOI: 10.1073/pnas.1509465112.
  • L. S. Novelino, et al., Untethered control of functional origami microrobots with distributed actuation, Proc. Natl. Acad. Sci. U.S.A., vol. 117, no. 39, pp. 24096–24101, 2020. DOI: 10.1073/pnas.2013292117.
  • H. Yasuda, et al., Origami-based tunable truss structures for non-volatile mechanical memory operation, Nat. Commun., vol. 8, no. 1, p. 962, 2017. DOI: 10.1038/s41467-017-00670-w.
  • T.-U. Lee, Z. You, and J. M. Gattas, Elastica surface generation of curved-crease origami, Int. J. Solids Struct., vol. 136–137, pp. 13–27, 2018. DOI: 10.1016/j.ijsolstr.2017.11.029.
  • Y. Tsuda, et al., Flight status of IKAROS deep space solar sail demonstrator, Acta Astronaut., vol. 69, no. 9–10, pp. 833–840, 2011. DOI: 10.1016/j.actaastro.2011.06.005.
  • S. A. Zirbel, et al., Accommodating thickness in origami-based deployable arrays, J. Mech. Des., vol. 135, no. 11, p. 111005, 2013. DOI: 10.1115/1.4025372.
  • A. L. Wickeler, A. Sajid, and H. E. Naguib, Triangular-based origami: Modelling and testing the parameterized design for geometrical and mechanical analysis, Thin Wall. Struct., vol. 173, p. 108993, 2022. DOI: 10.1016/j.tws.2022.108993.
  • L. H. Dudte, et al., Programming curvature using origami tessellations, Nat. Mater., vol. 15, no. 5, pp. 583–588, 2016.
  • F. Wang, et al., Folding to curved surfaces: A generalized design method and mechanics of origami-based cylindrical structures, Sci. Rep., vol. 6, p. 33312, 2016.
  • J.-E. Suh, et al., Self‐reconfiguring and stiffening origami tube, Adv. Eng. Mater., vol. 24, no. 5, p. 2101202, 2022. DOI: 10.1002/adem.202101202.
  • Z. Zhai, Y. Wang, and H. Jiang, Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness, Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 9, pp. 2032–2037, 2018. DOI: 10.1073/pnas.1720171115.
  • E. A. Elsayed and B. Basily, A continuous folding process for sheet materials, Int. J. Mater. Prod. Tec., vol. 21, no. 1, pp. 217–238, 2004. DOI: 10.1504/IJMPT.2004.004753.
  • J. Ma, S. Chai, and Y. Chen, Geometric design, deformation mode, and energy absorption of patterned thin-walled structures, Mech. Mater., vol. 168, p. 104269, 2022. DOI: 10.1016/j.mechmat.2022.104269.
  • W. Qiang, J. Zhang, D. Karagiozova, P. Tran, and G. Lu, Quasi-static energy absorption of Miura-ori metamaterials, JOM, vol. 73, no. 12, pp. 4177–4187, 2021. DOI: 10.1007/s11837-021-04939-w.
  • X. Xiang, Quasi-static and dynamic mechanical properties of Miura-ori metamaterials, Thin Wall. Struct., vol. 157, p. 106993, 2020. DOI: 10.1016/j.tws.2020.106993.
  • Z. Li, et al., Origami metamaterial with two-stage programmable compressive strength under quasi-static loading, Int. J. Mech. Sci., vol. 189, p. 105987, 2021. DOI: 10.1016/j.ijmecsci.2020.105987.
  • D. Karagiozova, et al., Response of graded Miura-ori metamaterials to quasi-static and dynamic in-plane compression, J. Aerosp. Eng., vol. 35, no. 4, p. 04022035, 2022. DOI: 10.1061/(ASCE)AS.1943-5525.0001416.
  • L. de Waal, et al., Dynamic behaviour of graded origami honeycomb, Int. J. Impact Eng., vol. 157, p. 103976, 2021. DOI: 10.1016/j.ijimpeng.2021.103976.
  • J. Ma, J. Song, and Y. Chen, An origami-inspired structure with graded stiffness, Int. J. Mech. Sci., vol. 136, pp. 134–142, 2018. DOI: 10.1016/j.ijmecsci.2017.12.026.
  • Y. Duan, et al., Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells, Int. J. Impact Eng., vol. 132, p. 103303, 2019. DOI: 10.1016/j.ijimpeng.2019.05.017.
  • D. Karagiozova, et al., Dynamic in-plane compression of Miura-ori patterned metamaterials, Int. J. Impact Eng., vol. 129, pp. 80–100, 2019. DOI: 10.1016/j.ijimpeng.2019.02.012.
  • J. Zhang, et al., Quasi-static large deformation compressive behaviour of origami-based metamaterials, Int. J. Mech. Sci., vol. 153–154, pp. 194–207, 2019. DOI: 10.1016/j.ijmecsci.2019.01.044.
  • R. K. Fathers, J. M. Gattas, and Z. You, Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures, Int. J. Mech. Sci., vol. 101–102, pp. 421–428, 2015. DOI: 10.1016/j.ijmecsci.2015.08.013.
  • J. M. Gattas and Z. You, Quasi-static impact of indented foldcores, Int. J. Impact Eng., vol. 73, pp. 15–29, 2014. DOI: 10.1016/j.ijimpeng.2014.06.001.
  • L. Yuan, et al., The behavior of a functionally graded origami structure subjected to quasi-static compression, Mater. Des., vol. 189, p. 108494, 2020. DOI: 10.1016/j.matdes.2020.108494.
  • J. Gao and Z. You, Origami-inspired Miura-ori honeycombs with a self-locking property, Thin Wall. Struct., vol. 171, p. 108806, 2022. DOI: 10.1016/j.tws.2021.108806.
  • S. Zhu, et al., Interaction integral method for crack-tip intensity factor evaluations of magneto-electro-elastic materials with residual strain, Eng. Fract. Mech., vol. 258, p. 108084, 2021. DOI: 10.1016/j.engfracmech.2021.108084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.