174
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A portable modular vaccine injection system actuated by shape memory alloy

ORCID Icon & ORCID Icon
Pages 2545-2561 | Received 13 Jun 2022, Accepted 19 Dec 2022, Published online: 28 Dec 2022

References

  • S. Bahl, H. Nagar, I. Singh, and S. Sehgal, Smart materials types, properties and applications: A review, Mater. Today: Proceed., vol. 28, pp. 1302–1306, 2020. DOI: 10.1016/j.matpr.2020.04.505.
  • C. Gotti, A. Sensini, A. Zucchelli, R. Carloni, and M. L. Focarete, Hierarchical fibrous structures for muscle‐inspired soft‐actuators: A review, Appl. Mater. Today, vol. 20, pp. 100772, 2020. DOI: 10.1016/j.apmt.2020.100772.
  • N. Gong, H. Jin, S. Sun, S. Mao, W. Li, and S. Zhang, A bionic soft tongue driven by shape memory alloy and pneumatics, Bioinspir. Biomim., vol. 16, pp. 55008, 2021.
  • C. Greco, P. Kotak, L. Pagnotta, and C. Lamuta, The evolution of mechanical actuation: From conventional actuators to artificial muscles, Int Mater Rev., vol. 67, no. 6, pp. 575–619, 2022.
  • J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Design., vol. 56, pp. 1078–1113, 2014. DOI: 10.1016/j.matdes.2013.11.084.
  • Kishan Zadafiya, Soni Kumari, Suman Chatterjee, Kumar, and Abhishek, Dinbandhu, Recent trends in non-traditional machining of shape memory alloys (SMAs): A review, CIRP J. Manufac Sci. Technol., vol. 32, pp. 217–227, 2021., DOI: 10.1016/j.cirpj.2021.01.003.
  • X. Yuan, M. Chen, Y. Yao, X. Guo, Y. Huang, Z. Peng, B. Xu, B. Lv, R. Tao, S. Duan, H. Liao, K. Yao, Y. Li, H. Lei, X. Chen, G. Hong and D. Fang, Recent progress in the design and fabrication of multifunctional structures based on metamaterials, Curr. Opin. Solid State Mater. Sci., vol. 25, no. 1, pp. 100883, 2021. DOI: 10.1016/j.cossms.2020.100883.
  • W. Huang, On the selection of shape memory alloys for actuators, Mater. Design., vol. 23, no. 1, pp. 11–19, 2002. DOI: 10.1016/S0261-3069(01)00039-5.
  • A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sens. Actuat. A: Phys., vol. 158, no. 1, pp. 149–160, 2010. DOI: 10.1016/j.sna.2009.12.020.
  • T. Ashuri, A. Armani, R. Jalilzadeh Hamidi, T. Reasnor, S. Ahmadi, and K. Iqbal, Biomedical soft robots: Current status and perspective, Biomed. Eng. Lett., vol. 10, no. 3, pp. 369–385, 2020. DOI: 10.1007/s13534-020-00157-6.
  • C. Zhang, P. Zhu, Y. Lin, Z. Jiao, and J. Zou, Modular soft robotics: Modular units, connection mechanisms, and applications, Adv. Intel Sys., vol. 2, no. 6, pp. 1900166, 2020. DOI: 10.1002/aisy.201900166.
  • S. Barbarino, E. I. Saavedra Flores, R. M. Ajaj, I. Dayyani, and M. I. Friswell, A review on shape memory alloys with applications to morphing aircraft, Smart Mater. Struct., vol. 23, pp. 63001, 2014.
  • Y. Lu, Z. Xie, J. Wang, H. Yue, M. Wu, and Y. Liu, A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator, Int. J. Mech. Sci., vol. 159, pp. 74–80, 2019. DOI: 10.1016/j.ijmecsci.2019.05.041.
  • J. Leng, X. Yan, X. Zhang, D. Huang, and Z. Gao, Design of a novel flexible shape memory alloy actuator with multilayer tubular structure for easy integration into a confined space, Smart Mater. Struct., vol. 25, pp. 25007, 2016.
  • C. Spindler, and D. Juhre, Development of a shape memory alloy actuator using generative manufacturing, Int. J. Adv. Manuf. Technol., vol. 97, no. 9–12, pp. 4157–4166, 2018. DOI: 10.1007/s00170-018-2153-0.
  • D. Mândru, I. Lungu, S. Noveanu, and O. T Tar, 2009. New actuation systems based on shape memory alloys, SPIE, Bellingham, Wash, p 72970P. DOI: 10.1117/12.823635.
  • Y. Tadesse, N. Thayer, and S. Priya, Tailoring the response time of shape memory alloy wires through active cooling and pre-stress, J. Intel. Mat. Syst. Str., vol. 21, no. 1, pp. 19–40, 2010. DOI: 10.1177/1045389X09352814.
  • H. Wang, M. Totaro, and L. Beccai, Toward perceptive soft robots: Progress and challenges, Adv. Sci. (Weinh.), vol. 5, no. 9, pp. 1800541, 2018. DOI: 10.1002/advs.201800541.
  • H. Jin, E. Dong, M. Xu, C. Liu, G. Alici, and Y. Jie, Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots, Smart Mater. Struct., vol. 25, pp. 85026, 2016.
  • S. Kim, C. Laschi, and B. Trimmer, Soft robotics: A bioinspired evolution in robotics, Trends Biotechnol., vol. 31, no. 5, pp. 287–294, 2013. DOI: 10.1016/j.tibtech.2013.03.002.
  • S. R. DJ, N. S S, and D. K, Differential resistance feedback control of a self-sensing shape memory alloy actuated system, ISA Trans., vol. 53, no. 2, pp. 289–297, 2014. DOI: 10.1016/j.isatra.2013.11.002.
  • B. H. Shin, T. Jang, B. Ryu, and Y. Kim, A modular torsional actuator using shape memory alloy wires, J. Intel. Mat. Syst. Str., vol. 27, no. 12, pp. 1658–1665, 2016. DOI: 10.1177/1045389X15600084.
  • M. Achenbach, A model for an alloy with shape memory, Int. J. Plasticity., vol. 5, no. 4, pp. 371–395, 1989. DOI: 10.1016/0749-6419(89)90023-5.
  • S. Seelecke, and I. Muller, Shape memory alloy actuators in smart structures: Modeling and simulation, Appl. Mech. Review., vol. 57, no. 1, pp. 23–46, 2004. DOI: 10.1115/1.1584064.
  • M. Achenbach, and I. Mueller, Simulation of material behaviour of alloys with shape memory. Arch. Mech., vol. 37, pp. 573–585, 1985.
  • W. Ballew, and S. Seelecke, Mesoscopic free energy as a framework for modeling shape memory alloys, J. Intel. Mat. Syst. Str., vol. 30, no. 13, pp. 1969–2012, 2019. DOI: 10.1177/1045389X19844330.
  • L. Fumagalli, F. Butera, and A. Coda, SmartFlex® NiTi wires for shape memory actuators, J. Mater Eng. Perform., vol. 18, no. 5–6, pp. 691–695, 2009. DOI: 10.1007/s11665-009-9407-9.
  • X. Li, S. Liu, L. Tong, and R. Gao, A multi-posture 3D printed actuator composed of VT-type bidirectional deflection fishbone-like modules based on shape memory alloy wires. Smart Mater. Struct., vol. 31, pp. 55016, 2022.
  • H. Mohammadi, A. Ebrahimian, and N. Maftoon, Fracture behaviour of human skin in deep needle insertion can be captured using validated cohesive zone finite-element method, Comput. Biol. Med., vol. 139, pp. 104982, 2021. DOI: 10.1016/j.compbiomed.2021.104982.
  • T. Irwin, A. Speirs, and C. Merrett, The effect of skin tension, needle diameter and insertion velocity on the fracture properties of porcine tissue, J. Mech. Behav. Biomed. Mater., vol. 123, pp. 104660, 2021. DOI: 10.1016/j.jmbbm.2021.104660.
  • S. P. Davis, B. J. Landis, Z. H. Adams, M. G. Allen, and M. R. Prausnitz, Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force, J. Biomech., vol. 37, no. 8, pp. 1155–1163, 2004. DOI: 10.1016/j.jbiomech.2003.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.