142
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure design and optimization of multilayered piezoelectric composites with wavy architectures

, , , ORCID Icon, &
Pages 3216-3232 | Received 07 Sep 2022, Accepted 19 Jan 2023, Published online: 06 Feb 2023

References

  • Z. Yang, S. Zhou, J. Zu, and D. Inman, High-performance piezoelectric energy harvesters and their applications, Joule., vol. 2, no. 4, pp. 642–697, 2018. DOI: DOI: 10.1016/j.joule.2018.03.011.
  • GT. Hwang, V. Annapureddy, J. H. Han, D.J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. Park, J.J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester, Adv. Energy Mater., vol. 6, no. 13, pp. 1600237, 2016. DOI: 10.1002/aenm.201600237.
  • X. Chen, S. Xu, N. Yao, W. Xu, and Y. Shi, Potential measurement from a single lead ziroconate titanate nanofiber using a nanomanipulator, Appl. Phys. Lett., vol. 94, no. 25, pp. 253113, 2009. DOI: 10.1063/1.3157837.
  • D. Ponnamma, K. K. Sadasivuni, J. Cabibihan, and M.A. Maadeed, Ceramic-Based Polymer Nanocomposites as Piezoelectric Materials”, Smart Polymer Nanocomposites, Springer, 2017. pp. 77–93
  • P. M. Rørvik, T. Grande, and M. A. Einarsrud, One‐Dimensional nanostructures of ferroelectric perovskites, Adv Mater., vol. 23, no. 35, pp. 4007–4034, 2011. Sep DOI: 10.1002/adma.201004676.
  • M. Koç, L. Paralı, and O. San, Fabrication and vibrational energy harvesting characterization of flexible piezoelectric nanogenerator (PEN) based on PVDF/PZT, Polym. Test., vol. 90, pp. 106695, 2020. DOI: 10.1016/j.polymertesting.2020.106695.
  • A. Salimi and A. A. Yousefi, FTIR studies of beta-phase crystal formation in stretched PVDF films, Polym. Test., vol. 22, no. 6, pp. 699–704, 2003. DOI: 10.1016/S0142-9418(03)00003-5.
  • R. G. Kepler and R. A. Anderson, Piezoelectricity and pyroelectricity in polyvinylidene fluoride, J. Appl. Phys., vol. 49, no. 8, pp. 4490–4494, 1978. DOI: 10.1063/1.325454.
  • A. J. Lovinger, Annealing of poly(vinylidene fluoride) and formation of a fifth phase, Macromolecules., vol. 15, no. 1, pp. 40–44, 1982. DOI: 10.1021/ma00229a008.
  • L. J. Lu, W. Q. Ding, J. Q. Liu, and B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy., vol. 78, pp. 105251, 2020. DOI: 10.1016/j.nanoen.2020.105251.
  • N. Mishra and K. Das, A Mori–Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions, SN Appl. Sci., vol. 2, no. 7, pp.1–14, 2020. Jun DOI: 10.1007/s42452-020-2958-y.
  • P. Mangaiyarkarasi, P. Lakshmi, and V. Sasrika, Design of piezoelectric energy harvesting structures using ceramic and polymer materials, J Mech Sci Technol., vol. 35, no. 4, pp. 1407–1419, 2021. DOI: 10.1007/s12206-021-0307-8.
  • G. Tian, W. Deng, Y. Gao, D. Xiong, C.Yan, X. He, T. Yang, Long Jin, X. Chu , H. Zhang , W. Yan, and W. Yang, Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training, Nano Energy., vol. 59, pp. 574–581, 2019. DOI: 10.1016/j.nanoen.2019.03.013.
  • X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu, and M. Dong, Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review, Sensors., vol. 18, no. 2, pp. 330, 2018. DOI: 10.3390/s18020330.
  • N. Chamankar, R. Khajavi, A. Yousefi, A. Rashidi, and F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications, Ceram. Int., vol. 46, no. 12, pp. 19669–19681, 2020. DOI: 10.1016/j.ceramint.2020.03.210.
  • Q. Chen and G. Wang, Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface, Compos. Struct., vol. 232, no. 15, pp. 111452, 2020. DOI: 10.1016/j.compstruct.2019.111452.
  • Q. Chen, W. Tu, R. Liu, and X. Chen, Parametric multiphysics finite-volume theory for periodic composites with thermo-electro-elastic phases, J. Intell. Mater. Syst. Struct., vol. 29, no. 4, pp. 530–552, 2018. DOI: 10.1177/1045389X17711789.
  • R. Kar-Gupta and T. A. Venkatesh, Electromechanical response of 1-3 piezoelectric composites: Effect of poling characteristics, J. Appl. Phys., vol. 98, no. 5, pp. 054102, 2005. DOI: 10.1063/1.2014933.
  • A. Jain, K. J. Prashanth, Kr. A. Sharma, A. Jain, and P. N. Rashmi, Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review, Polym Eng Sci., vol. 55, no. 7, pp. 1589–1616, 2015. Jul DOI: 10.1002/pen.24088.
  • S. K. Pradhan, A. Kumar, P. Kour, R. Pandey, P .Kumar, and M. Kar, Piezoelectric and mechanical properties of PVDFPZT composite, Ferroelectrics., , vol. 558, no. 1, pp. 59–66, 2020. DOI: 10.1080/00150193.2020.1735889.
  • A. Jain, S. J. Kumar, M. R. Kumar, A. S. Ganesh, and S. Srikanth, PVDF-PZT Composite Films for Transducer Applications, Mech. Adv. Mater. Struct., vol. 21, no. 3, pp. 181–186, 2014. DOI: 10.1080/15376494.2013.834094.
  • Shivaji H. Wankhade, Shivam Tiwari, Anupama Gaur, and Pralay Maiti, PVDF–PZT nanohybrid based nanogenerator for energy harvesting applications, Energy Rep., vol. 6, pp. 358–364, 2020. Nov DOI: 10.1016/j.egyr.2020.02.003.
  • J. Yun, C. Park,Y. Jeong, J. Cho, J. Park, S. Yoon, and K. Hwang, The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites, Nanomater. Nanotechnol., vol. 6, no. 20, pp. 20, 2016. Mar DOI: 10.5772/62433.
  • C. Yan, W. Deng, L. Jin, T. Yang, Z. Wang, X. Chu, H. Su, J. Chen, and W. Yang, Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring, ACS Appl. Mater. Interfaces., vol. 10, no. 48, pp. 41070–41075, 2018. DOI: 10.1021/acsami.8b14514.
  • M. Grzegorz, S. Dariusz, and B. Andrzej, Analytical and numerical modelling of deflection of circular three-layer piezoelectric transducer, Eng. Rural Develop., vol. 19, no. 1, pp. 555–564, 2020. May DOI: 10.22616/ERDev.2020.19.TF125.
  • G. Mieczkowski, A. Borawski, and D. Szpica, Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors., vol. 20, no. 1, 2020. DOI: 10.3390/s20010222.
  • S. R. Karbari, S. Jain, S. Gaur, M. U. Kumari, and G. Shireesha, Optimization, design and analysis of a MEMS microphone with PVDF as a structural layer for cochlear implant applications, Nanoelectron., Circuits Commun. Syst., vol. 692, no. 1, pp. 403–415, 2021. DOI: 10.1007/978-981-15-7486-3_37.
  • P. Marechal, F.Levassort, J. Holc, LP.Tran-Huu-Hue, M. Kosec, and M. Lethiecq, High frequency transducer based on integrated piezoelectric thick films for medical imaging, IEEE Int. Ultrason. Sympos. C., vol. 1, no. 4, pp. 2223–2226, 2005.
  • W. Geng, X. Chen, L. Pan, X. Qiao, J. He, J. Mu, X.Hou, and X. Chou, Improved crystallization, domain, and ferroelectricity by controlling lead/oxygen vacancies in Mn-doped PZT thin films, Mater. Charact., vol. 176, pp. 111131, 2021. Jun DOI: 10.1016/j.matchar.2021.111131.
  • V. S. Kathavate, H. Sonagara, B. Praveen Kumar, I. Singh, and E. Prasad K, Tailoring anomechanical properties of hard and soft PZT piezoceramics via domain engineering by selective annealing, Mater. Today Commun., vol. 28, pp. 102495, 2021. Jun DOI: 10.1016/j.mtcomm.2021.102495.
  • Z. Wang, W. Zhu, H. Zhu, J. Miao, C. Chao, C. Zhao, and O. K. Tan, Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite pZT Films, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 52, no. 12, pp. 2289–2297, 2005. DOI: 10.1109/TUFFC.2005.1563271.
  • D. Zou, S. Liu, C. Zhang, Y. Hong, G. Zhang, and Z. Yang, Flexible and translucent PZT films enhanced by the compositionally graded heterostructure for human body monitoring, Nano Energy., vol. 85, pp. 105984, 2021. Jul DOI: 10.1016/j.nanoen.2021.105984.
  • Tianpeng Xie, Qingjie Liu, Guilan Xue, and Xue Gou, Numerical analysis of piezoelectric and mechanical response of buckled poly(vinylidene fluoride)nanofibers for the design of highly stretchable electronics, J Mater Sci., vol. 55, no. 24, pp. 10668–10677, 2020. DOI: 10.1007/s10853-020-04791-4.
  • G. Feng, and Z. Huang, A smart acoustic emission and mechanical impedance hybrid sensor with static force detecting and dynamic measuring capabilities, 2013 Transducers & Eurosensors XXVII C, Barcelona, Spain, 16-20 June 2013, pp. 936–939. DOI: 10.1109/Transducers.2013.6626922.
  • X. Feng, B. D. Yang, Y. Liu, Y. Wang, C. Dagdeviren, Z. Liu, A. Carlson, J. Li, Y. Huang, and J. A. Rogers, Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates, ACS Nano., vol. 5, no. 4, pp. 3326–3332, 2011. DOI: 10.1021/nn200477q.
  • C. Jiang and Y. Cheung, An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites, International Journal of Solids and Structures”., vol. 38, no. 28-29, pp. 4777–4796, May 2001. DOI: 10.1016/S0020-7683(00)00324-3.
  • J. Xiao, Y. Xu, and F. Zhang, Generalized self-consistent electroelastic estimation of piezoelectric nanocomposites accounting for fiber section shape under antiplane shear, Acta Mech., vol. 227, no. 5, pp. 1381–1392, May 2016. DOI: 10.1007/s00707-015-1558-1.
  • J. Li and M. L. Dunn, Variational bounds for the effective moduli of heterogeneous piezoelectric solids, Philos. Mag. A-Phys. Condensed Matter Struct. Defects Mech. Prop., vol. 81, no. 4, pp. 903–926, 2001. Apr DOI: 10.1080/01418610108214327.
  • Y. Bansal, and M. J. Pindera, A second look at the higher-order theory for periodic multiphase materials, J. Appl. Mech: Trans. ASME., vol. 72, no. 2, pp. 177–195, 2005. DOI: 10.1115/1.1831294.
  • Y. Bansal, and M. J. Pindera, Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases, Int. J. Plast., vol. 22, no. 5, pp. 775–825, 2006. DOI: 10.1016/j.ijplas.2005.04.012.
  • M. A. Cavalcante, H. Khatam, and M. J. Pindera, Homogenization of elastic–plastic periodic materials by FVDAM and FEM approaches–an assessment, Compos. B: Eng., vol. 42, no. 6, pp. 1713–1730, 2011. DOI: 10.1016/j.compositesb.2011.03.006.
  • W. Tu and M. J. Pindera, Cohesive zone-based damage evolution in periodic materials via finite-volume homogenization, Trans. ASME, J. Appl. Mech., vol. 81, no. 10, pp. 101005, 2014. DOI: 10.1115/1.4028103.
  • W. Tu, and Q. Chen, Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading, Eng. Fract. Mech., vol. 230, no. 106947, pp. 106947, 2020. DOI: 10.1016/j.engfracmech.2020.106947.
  • W. Tu and Q. Chen, Homogenization and localization of unidirectional fiber-reinforced composites with evolving damage by FVDAM and FEM approaches: A critical assessment, Eng. Fract. Mech., vol. 239, no. 107280, pp. 107280, 2020. DOI: 10.1016/j.engfracmech.2020.107280.
  • Q. Chen, and M. J. Pindera, Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: An assessment of computational approaches, Int. J. Plast., vol. 124, pp. 42–70, 2020. DOI: 10.1016/j.ijplas.2019.08.004.
  • W. Tu, and Q. Chen, Electromechanical response of multilayered piezoelectric BaTiO3/PZT-7A composites with wavy architecture, J. Intell. Mater. Syst. Struct., vol. 32, no. 17, pp. 1966–1986, 2021. DOI: 10.1177/1045389X20983887.
  • K. Tao, Z. Chen, H. Yi, R. Zhang, Q. Shen, J. Wu, L. Tang, K. Fan, Y. Fu, and J. Miao, Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting, Nanomicro Lett., vol. 13, no. 1, pp. 123, 2021. DOI: 10.1007/s40820-021-00644-0.
  • H. Khatam, and M. J. Pindera, Plasticity-triggered architectural effects in periodic multilayers with wavy microstructures, Int. J. Plast., vol. 26, no. 2, pp. 273–287, 2010. DOI: 10.1016/j.ijplas.2009.06.002.
  • H. Khatam, and M. J. Pindera, Microstructural scale effects in the nonlinear elastic response of bio-inspired wavy multilayers undergoing finite deformation, Compos. B: Eng., vol. 43, no. 3, pp. 869–884, 2012. Apr DOI: 10.1016/j.compositesb.2011.11.032.
  • J.Kennedy, R Eberhart, Particle swarm optimization, 1995 IEEE International Conference on Neural Networks Proceedings, Vol. 4, pp. 1942–1948, December, 1995. DOI: 10.1109/ICNN.1995.488968.
  • W. Tu, and M. J. Pindera, Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures, J. Mech. Behav. Biomed. Mater., vol. 28, pp. 291–308, Dec 2013. DOI: 10.1016/j.jmbbm.2013.12.013.
  • R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids., vol. 11, no. 5, pp. 357–372, 1963. DOI: 10.1016/0022-5096(63)90036-X.
  • W. Deng, X. Zhang, Y. Zhou, Y. Liu, X. Zhou, H. Chen, and H. Zhao, An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems, Inf. Sci., vol. 585, pp. 441–453, 2022. DOI: 10.1016/j.ins.2021.11.052.
  • W. Deng,, H. Ni, Y. Liu, H. Chen, and H. Zhao, An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation, Appl. Soft Comput., vol. 127, pp. 109419, 2022, DOI: 10.1016/j.asoc.2022.109419.
  • W. Deng, J. Xu, X. Gao, and H. Zhao, An Enhanced MSIQDE Algorithm With Novel Multiple Strategies for Global Optimization Problems, IEEE Transactions on Systems., vol. 52, no. 3, pp. 1578–1587, March 2022. DOI: 10.1109/TSMC.2020.3030792.
  • Y. Song, X. Cai, X, Zhou, B. Zhang, H. Chen, Y. Li, W. Q. Deng, and W. Deng, Dynamic hybrid mechanism-based differential evolution algorithm and its application, Expert Syst. Appl., vol. 213, pp. 118834, 2023. DOI: 10.1016/j.eswa.2022.118834.
  • W. Deng, L. Zhang, X. Zhou, Y. Zhou, Y. Sun, W. Zhu, H. Chen, W. Deng, H.Chen, and H. Zhao, Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem, Inf. Sci., vol. 612, pp. 576–593, Sep. 2022. DOI: 10.1016/j.ins.2022.08.115.
  • X. Zhao, W. Tu, Q. Chen, and G. Wang, Progressive modeling of transverse thermal conductivity of unidirectional natural fiber composites, Int. J. Therm. Sci., vol. 162, pp. 106782, 2021. Apr DOI: 10.1016/j.ijthermalsci.2020.106782.
  • G. Wang and M. J. Pindera, Elasticity-based microstructural optimization: an integrated multiscale framework, Materials & Design., vol. 132, pp. 337–348, Oct. 2017. DOI: 10.1016/j.matdes.2017.07.003.
  • G. Wang, Homogenized and localized reconfiguration of solid or hollow fiber reinforced materials in a multi-scale framework, Compos. Struct., vol. 184, pp. 1099–1110, 2018. DOI: 10.1016/j.compstruct.2017.10.018.
  • J. Sun, B. Feng, and W. Xu, Particle Swam Optimization with Particles Having Quantum Behavior, Proceedings of 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), pp. 325–331, June 2004. DOI: 10.1109/CEC.2004.1330875.
  • S. Tu, O. U. Rehman, S. U. Rehman, S. Ullah, M. Waqas, and R. Zhu, A Novel Quantum Inspired Particle Swarm Optimization Algorithm for Electromagnetic Applications, IEEE., vol. 8, pp. 21909–21916, 2020. DOI: 10.1109/ACCESS.2020.2968980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.