205
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effect of the number of stiffeners on the lateral deformation behavior of additively manufactured thin-walled cylindrical tubes

&
Pages 3233-3244 | Received 25 Oct 2022, Accepted 19 Jan 2023, Published online: 30 Jan 2023

References

  • B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, S. Polak, and A. Tobota, The use of thin-walled sections for energy absorbing components: a review, Arch. Civ. Mech. Eng., vol. 10, no. 4, pp. 5–19, 2010.
  • J. Fang, G. Sun, N. Qiu, N. H. Kim, and Q. Li, On design optimization for structural crashworthiness and its state of the art, Struct. Multidiscip. Optim., vol. 55, no. 3, pp. 1091–1119, 2017.
  • A. G. Olabi, E. Morris, and M. S. J. Hashmi, Metallic tube type energy absorbers: a synopsis, Thin-Wall. Struct., vol. 45, no. 7–8, pp. 706–726, 2007.
  • A. Baroutaji, M. Sajjia, and A. G. Olabi, On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments, Thin-Wall. Struct., vol. 118, pp. 137–163, 2017.
  • A. G. Mamalis, M. Robinson, D. E. Manolakos, G. A. Demosthenous, M. B. Ioannidis, and J. Carruthers, Crashworthy capability of composite material structures, Compos. Struct., vol. 37, no. 2, pp. 109–134, 1997.
  • Joe J. Carruthers, A. P. Kettle, and A. M. Robinson, Energy absorption capability and crashworthiness of composite material structures: a review, Appl. Mech. Rev. vol. 51, no. 10. pp. 635–649, 1998.
  • M. F. M. Alkbir, S. M. Sapuan, A. A. Nuraini, and M. R. Ishak, Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review, Compos. Struct., vol. 148, pp. 59–73, 2016.
  • S. A. Oshkovr, R. A. Eshkoor, S. T. Taher, A. K. Ariffin, and C. H. Azhari, Crashworthiness characteristics investigation of silk/epoxy composite square tubes, Compos. Struct., vol. 94, no. 8, pp. 2337–2342, 2012.
  • Z. Zhang, W. Sun, Y. Zhao, and S. Hou, Crashworthiness of different composite tubes by experiments and simulations, Compos. B Eng., vol. 143, pp. 86–95, 2018.
  • M. A. Attia, M. A. Abd El–Baky, M. A. Hassan, T. A. Sebaey, and E. Mahdi, Crashworthiness characteristics of carbon–jute–glass reinforced epoxy composite circular tubes, Polym. Compos., vol. 39, no. S4, pp. E2245–E2261, 2018.
  • K. R. F. Andrews, G. L. England, and E. Ghani, Classification of the axial collapse of cylindrical tubes under quasi-static loading, Int. J. Mech. Sci., vol. 25, no. 9–10, pp. 687–696, 1983.
  • G. Zhu, G. Sun, H. Yu, S. Li, and Q. Li, Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading, Int. J. Mech. Sci., vol. 135, pp. 458–483, 2018.
  • Y.-S. Chiu, and S.-T. Jenq, Crushing behavior of metallic thin-wall tubes with triggering mechanisms due to quasi-static axial compression, J. Chin. Inst. Eng., vol. 37, no. 4, pp. 469–478, 2014.
  • A. A. A. Alghamdi, Collapsible impact energy absorbers: an overview, Thin-Wall. Struct., vol. 39, no. 2, pp. 189–213, 2001.
  • G. C. Jacob, J. F. Fellers, S. Simunovic, and J. M. Starbuck, Energy absorption in polymer composites for automotive crashworthiness, J. Compos. Mater., vol. 36, no. 7, pp. 813–850, 2002.
  • T. A. Sebaey, and E. Mahdi, Crashworthiness of pre-impacted glass/epoxy composite tubes, Int. J. Impact Eng., vol. 92, pp. 18–25, 2016.
  • A. G. Mamalis, D. E. Manolakos, G. A. Demosthenous, and M. B. Ioannidis, Analysis of failure mechanisms observed in axial collapse of thin-walled circular fibreglass composite tubes, Thin-Wall. Struct., vol. 24, no. 4, pp. 335–352, 1996.
  • N. K. Gupta, R. Velmurugan, and S. K. Gupta, An analysis of axial crushing of composite tubes, J. Compos. Mater., vol. 31, no. 13, pp. 1262–1286, 1997.
  • H. Taghipoor, A. Eyvazian, A. Ghiaskar, A. P. Kumar, A. M. Hamouda, and M. Gobbi, Experimental investigation of the thin-walled energy absorbers with different sections including surface imperfections under low-speed impact test, Mater. Today: Proceed., vol. 27, no. 2, pp. 1498–1504, 2020.
  • H. Taghipoor, A. Ghiaskar, and A. Shavalipour, Crashworthiness performance of thin-walled, square tubes with circular hole discontinuities under high-speed impact loading, Int. J. Crashworth., vol. 27, no.6, pp. 1–13, 2021.
  • G. Zhu, Z. Zhao, P. Hu, G. Luo, X. Zhao, and Q. Yu, On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP Skeleton, Thin-Wall. Struct., vol. 160, pp. 107390, 2021.
  • Z. Li, W. Ma, S. Yao, and P. Xu, Crashworthiness performance of corrugation-reinforced multicell tubular structures, Int. J. Mech. Sci., vol. 190, pp. 106038, 2021.
  • M. Mahbod, M. Asgari, and C. Mittelstedt, Architected functionally graded porous lattice structures for optimized elastic-plastic behavior, Proc. Inst. Mech. Eng. J. Mat. Des. Appl., vol. 234, no. 8, pp. 1099–1116, 2020.
  • M. Teimouri, and M. Asgari, Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., vol. 235, no. 9, pp. 1593–1618, 2021.
  • M. Helou, and S. Kara, Design, analysis and manufacturing of lattice structures: an overview, Int. J. Comput. Integr. Manuf., vol. 31, no. 3, pp. 243–261, 2018.
  • Y. Sha, L. Jiani, C. Haoyu, R. O. Ritchie, and X. Jun, Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing, Int. J. Mech. Sci., vol. 149, pp. 150–163, 2018.
  • G. Z. Feng, J. Wang, X. Y. Li, L. J. Xiao, and W. D. Song, 2021. Mechanical behavior of Ti–6Al–4V Lattice-Walled Tubes under Uniaxial Compression. Defence Technology, The Netherlands, vol. 18, no. 7, pp. 1124–1138.
  • Y. Guo, J. Zhang, L. Chen, B. Du, H. Liu, L. Chen, W. Li, and Y. Liu, Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load, Aerosp. Sci. Technol., vol. 98, pp. 105662, 2020.
  • F. Usta, O. F. Ertaş, A. Ataalp, H. S. Türkmen, Z. Kazancı, and F. Scarpa, Impact behavior of triggered and non-triggered crash tubes with auxetic lattices, Multisc. Multidis. Model. Exp. Des., vol. 2, no. 2, pp. 119–127, 2019.
  • C. Guo, D. Zhao, Z. Liu, Q. Ding, H. Gao, Q. Yan, Y. Sun, and F. Ren, The 3D-printed honeycomb metamaterials tubes with tunable negative Poisson’s ratio for high-performance static and dynamic mechanical properties, Materials., vol. 14, no. 6, pp. 1353, 2021.
  • H. Taghipoor, A. Eyvazian, A. Ghiaskar, A. P. Kumar, A. M. Hamouda, and M. Gobbi, Experimental and numerical study of lattice-core sandwich panels under low-speed impact, Mater. Today: Proceed., vol. 27, no. 2, pp. 1487–1492, 2020.
  • A. Praveen Kumar, and M. Nalla Mohamed, Crush performance analysis of combined geometry tubes under axial compressive loading, Procedia Eng., vol. 173, pp. 1415–1422, 2017.
  • A. Praveen Kumar, L. Ponraj Sankar, D. Maneiah, and Gaddam Upendra, Lateral crushing and energy absorption behavior of multicellular tube structures, Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 2684–2687, 2019. DOI: 10.35940/ijitee.A4837.119119.
  • J. Nagarjun, A. Praveen Kumar, K. Yamini Reddy, and L. Ponraj Sankar, Dynamic crushing and energy absorption performance of newly designed multitubular structures, Mater. Today: Proceed., vol. 27, no. 2, pp. 1928–1933, 2020.
  • M. Gowthamuneswara Rao, A. Praveen Kumar, Ch Nagaraj, and L. Ponraj Sankar, Investigations on the lateral impact behaviour of combined geometry tubular structures and its effect of cap fillet radius, Mater. Today: Proceed., vol. 27, no. 2, pp. 1912–1916, 2020.
  • M. Nalla Mohamed, and A. Praveen Kumar, New insight to improve energy absorption characteristics of long circular tubes with stiffeners as controllable energy dissipating devices, Procedia Eng., vol. 173, pp. 1399–1406, 2017.
  • X. Fu, X. Zhang, and Z. Huang, Axial crushing of Nylon and Al/Nylon hybrid tubes by FDM 3D printing, Compos. Struct., vol. 256, pp. 113055, 2021.
  • O. Laban, E. Mahdi, S. Samim, and J. J. Cabibihan, A comparative study between polymer and metal additive manufacturing approaches in investigating stiffened hexagonal cells, Materials., vol. 14, no. 4, pp. 883, 2021.
  • P. Gyanadeep, G. Upendra, A. Snehith, C. Pradeep, and B. Raju, Computational analysis on the lateral deformation characteristics of aluminum tubes with wavy stiffeners, Mater. Today: Proc., vol. 27, pp. 1168–1171, 2020.
  • N. Ahmed, P. Xue, M. Kamran, N. Zafar, A. Mustafa, and M. S. Zahran, Investigation of the energy absorption characteristics of metallic tubes with curvy stiffeners under dynamic axial crushing, Latin Am. J. Solid. Struct., vol. 14, pp. 1293–1313, 2017.
  • A. E. Ismail, and M. F. Sahrom, Lateral crushing energy absorption of cylindrical kenaf fiber reinforced composites, Int. J. Appl. Eng. Res., vol. 10, no. 8, pp. 19277–19288, 2015.
  • M. F. A. Alkbir, and M. R. Ishak, Lateral crushing properties of non-woven kenaf (mat)-reinforced epoxy composite hexagonal tubes, Int. J. Precis. Eng. Manuf., vol. 17, no. 7, pp. 965–972, 2016.
  • S. T. Lau, M. A. Said, and M. Y. Yaakob, On the effect of geometrical designs and failure modes in composite axial crushing: A literature review, Compos. Struct., vol. 94, no. 3, pp. 803–812, 2012.
  • G. L. Farley, and R. M. Jones, Crushing characteristics of continuous fiber-reinforced composite tubes, J. Compos. Mater., vol. 26, no. 1, pp. 37–50, 1992.
  • S. Tabacu, and C. Ducu, Experimental testing and numerical analysis of FDM multi-cell inserts and hybrid structures, Thin-Wall. Struct., vol. 129, pp. 197–212, 2018.
  • R. D. C. Silva, G. M. Castro, A. B. D. S. Oliveira, A. C. Brasil, and S. M. Luz, Crashworthiness performance of hybrid energy absorbers using PET-G honeycomb structure, Mech. Based Des. Struct. Mach., pp. 1–26, 2022.
  • R. S. Birch, and N. Jones, Dynamic and static axial crushing of axially stiffened cylindrical shells, Thin-Wall. Struct., vol. 9, no. 1–4, pp. 29–60, 1990.
  • M. Kamran, X. Pu, N. A. V. E. E. D. Ahmed, and A. A. G. Hanif, Numerical dynamic axial crushing of bi-tubular metallic cylindrical tubes with stiffeners. ICIC express letters, Part B, Appl: Int. J. Res. Surv., vol. 8, no. 12, pp. 1595–1601, 2017.
  • C. W. Isaac, and F. Duddeck, Current trends in additively manufactured (3D printed) energy absorbing structures for crashworthiness application–a review, Virtual Phys. Prototyp., vol. 17, no. 4, pp. 1–44, 2022.
  • Q. Ma, M. R. M. Rejab, A. P. Kumar, H. Fu, N. M. Kumar, and J. Tang, Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., vol. 235, no. 19, pp. 4254–4272, 2021.
  • K. Wang, J. Xiang, J. Wang, G. Xie, Y. Liu, Y. Peng, Y. Rao, and R.M. Boumbimba, Effects of printing direction on quasi‐static and dynamic compressive behavior of 3D printed short fiber reinforced polyamide‐based composites, Polym. Adv. Technol., 2022.
  • K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng, and Y. Rao, Effects of infill characteristics and strain rate on the deformation and failure properties of additively manufactured polyamide-based composite structures, Res. Phys., vol. 18, pp. 103346, 2020.
  • D. X. Li, X. Deng, J. Wang, J. Yang, and X. Li, Mechanical and tribological properties of polyamide 6–polyurethane block copolymer reinforced with short glass fibers, Wear., vol. 269, no. 3–4, pp. 262–268, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.