314
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Additive manufacturing and characterization of mathematically designed bone scaffolds based on triply periodic minimal surface lattices

ORCID Icon
Pages 3492-3502 | Received 05 Dec 2022, Accepted 04 Feb 2023, Published online: 10 Jul 2023

References

  • U.O. Agwu, K. Wang, C. Singh, C. Leemhuis, S. Yamakawa, and K. Shimada, Assessing tetrahedral lattice parameters for engineering applications through finite element analysis, 3D Print Addit. Manuf., vol. 8, no. 4, pp. 238–252, 2021. DOI: 10.1089/3dp.2020.0222.
  • S.K. Moon, Y.E. Tan, J. Hwang, and Y.-J. Yoon, Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures, Int. J. Precis. Eng. Manuf.-Green Tech., vol. 1, no. 3, pp. 223–228, 2014. DOI: 10.1007/s40684-014-0028-x.
  • R. Attarzadeh, M. Rovira, and C. Duwig, Design analysis of the “Schwartz D” based heat exchanger: A numerical study, Int. J. Heat Mass Transf., vol. 177, pp. 121415, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121415.
  • F. Liu, D. Zhang, P. Zhang, M. Zhao, and S. Jafar, Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting, Materials., vol. 11, no. 3, pp. 374, 2018. DOI: 10.3390/ma11030374.
  • L. Li, J. Shi, K. Zhang, L. Yang, F. Yu, L. Zhu, H. Liang, X. Wang, and Q. Jiang, Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models, J. Orthop. Translat., vol. 19, pp. 94–105, 2019. DOI: 10.1016/j.jot.2019.03.003.
  • A.A. Zadpoor, Bone tissue regeneration: The role of scaffold geometry, Biomater. Sci., vol. 3, no. 2, pp. 231–245, 2015. DOI: 10.1039/c4bm00291a.
  • R. Guerra Silva, M.J. Torres, and J. Zahr Viñuela, A comparison of miniature lattice structures produced by material extrusion and vat photopolymerization additive manufacturing, Polymers, vol. 13, no. 13, pp. 2163, 2021. DOI: 10.3390/polym13132163.
  • A. Alammar, J.C. Kois, M. Revilla‐León, and W. Att, Additive manufacturing technologies: Current status and future perspectives, J. Prosthodont., vol. 31, no. S1, pp. 4–12, 2022. DOI: 10.1111/jopr.13477.
  • I. Xenikakis, K. Tsongas, E.K. Tzimtzimis, C.K. Zacharis, N. Theodoroula, E.P. Kalogianni, E. Demiri, I.S. Vizirianakis, D. Tzetzis, and D.G. Fatouros, Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery, Int. J. Pharm., vol. 597, pp. 120303, 2021. DOI: 10.1016/j.ijpharm.2021.120303.
  • C.A. Hoel, S.K. Peterson, R. Rose, E. Telfeyan, L.A. Boyd, J.-H. Her, D.J. Erno, C. Bhushan, J.S. Martinez, B.M. Davis, S. Duclos, and G. Parthasarathy, Processing vat polymerized triply periodic minimal surface scaffolds of hydroxyapatite, Adv. Eng. Mater., vol. 25, no. 1, pp. 2200956, 2023. DOI: 10.1002/adem.202200956.
  • H. Zhu, M. Li, X. Huang, D. Qi, L.P. Nogueira, X. Yuan, W. Liu, Z. Lei, J. Jiang, H. Dai, and J. Xiao, 3D printed tricalcium phosphate-bioglass scaffold with gyroid structure enhance bone ingrowth in challenging bone defect treatment, Appl. Mater. Today, vol. 25, pp. 101166, 2021. DOI: 10.1016/j.apmt.2021.101166.
  • N.S.A. Hashimi, S.S. Soman, M. Govindharaj, and S. Vijayavenkataraman, 3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering, Mater. Today Commun., vol. 31, pp. 103382, 2022. DOI: 10.1016/j.mtcomm.2022.103382.
  • S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, 3D-printed cellular structures for bone biomimetic implants, Addit. Manuf., vol. 15, pp. 93–101, 2017. DOI: 10.1016/j.addma.2017.03.010.
  • Z. Zhao, J. Li, Y. Wei, and T. Yu, Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering, J. Mech. Behav. Biomed. Mater., vol. 126, pp. 105052, 2022. DOI: 10.1016/j.jmbbm.2021.105052.
  • L. Yang, C. Yan, C. Han, P. Chen, S. Yang, and Y. Shi, Mechanical response of a triply periodic minimal surface cellular structures manufactured by selective laser melting, Int. J. Mech. Sci., vol. 148, pp. 149–157, 2018. DOI: 10.1016/j.ijmecsci.2018.08.039.
  • A. Timercan, V. Sheremetyev, and V. Brailovski, Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: Functional requirements and comparative analysis, Sci. Technol. Adv. Mater., vol. 22, no. 1, pp. 285–300, 2021. DOI: 10.1080/14686996.2021.1907222.
  • L. Han and S. Che, An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems, Adv. Mater., vol. 30, no. 17, pp. 1705708, 2018. DOI: 10.1002/adma.201705708.
  • A.H. Schoen, Infinite periodic minimal surfaces without self-intersections,” NASA Tech, Note-5541., May 1970.
  • H.A. Schwarz, Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1890.
  • S. Yu, J. Sun, and J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des., vol. 182, pp. 108021, 2019. DOI: 10.1016/j.matdes.2019.108021.
  • R. Ambu, and A. Morabito, Porous scaffold design based on minimal surfaces: Development and assessment of variable architectures, Symmetry., vol. 10, no. 9, pp. 361, 2018. DOI: 10.3390/sym10090361.
  • M.S. Flores-Jimenez and R.Q. Fuentes-Aguilar, Bone tissue scaffolds designed with a porosity gradient based on triply periodic minimal surfaces using a parametric approach, 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, pp. 1209–1212, November 2021. DOI: 10.1109/EMBC46164.2021.9630603.
  • J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering, Sci. Rep., vol. 8, no. 1, pp. 7395, 2018. DOI: 10.1038/s41598-018-25750-9.
  • S. Rajagopalan, L. Lu, M.J. Yaszemski, and R.A. Robb, Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds, Presented at the Medical Imaging, San Diego, CA, p. 636, April 2005. DOI: 10.1117/12.594602.
  • S. Rajagopalan and R. Robb, Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds, Med. Image Anal., vol. 10, no. 5, pp. 693–712, 2006. DOI: 10.1016/j.media.2006.06.001.
  • R. Ambu and A.E. Morabito, Modeling, assessment, and design of porous cells based on schwartz primitive surface for bone scaffolds, Sci. World J., vol. 2019, pp. 1–16, 2019. DOI: 10.1155/2019/7060847.
  • nTopology, nTopology: Next-Generation Engineering Design Software, [Online]. Available: https://ntopology.com. Accessed: Dec. 15, 2022.
  • L. Nickels, Software toolkits for architected materials, lightweighting, and more, Met. Powder Rep., vol. 75, no. 4, pp. 203–206, 2020. DOI: 10.1016/j.mprp.2020.04.003.
  • Materialise, Materialise 3-matic and Materialise Structures, [Online]. Available: https://www.materialise.com/en/industrial/software Accessed: Dec. 15, 2022.
  • Autodesk, Within Medical, [Online]. Available: https://www.autodesk.com/products/within-medical/overview Accessed: Dec. 15, 2022.
  • M. Helou and S. Kara, Design, analysis and manufacturing of lattice structures: An overview, Int. J. Comput. Integr. Manuf., vol. 31, no. 3, pp. 243–261, 2018. DOI: 10.1080/0951192X.2017.1407456.
  • O. Al‐Ketan, and R.K. Abu Al‐Rub, MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces, Mater. Des. Process. Commun., vol. 3, no. 6, pp. e205, 2021. DOI: 10.1002/mdp2.205.
  • A. Jones, M. Leary, S. Bateman, and M. Easton, TPMS designer: A tool for generating and analyzing triply periodic minimal surfaces, Softw. Impacts, vol. 10, pp. 100167, 2021. DOI: 10.1016/j.simpa.2021.100167.
  • S.K.K. Raju and P.S. Onkar, Lattice_Karak: Lattice structure generator for tissue engineering, lightweighting and heat exchanger applications, Softw. Impacts, vol. 14, pp. 100425, 2022. DOI: 10.1016/j.simpa.2022.100425.
  • I. Maskery, L.A. Parry, D. Padrão, R.J.M. Hague, and I.A. Ashcroft, FLatt Pack: A research-focussed lattice design program, Addit. Manuf., vol. 49, pp. 102510, 2022. DOI: 10.1016/j.addma.2021.102510.
  • Crystallon, Crystallon Plug-in, [Online]. Available: http://fequalsf.blogspot.com/p/crystallon.html Accessed: Dec. 15, 2022.
  • McGill University Additive Design & Manufacturing Laboratory (ADML), Intralattice, [Online]. Available: http://www.intralattice.com Accessed: Dec. 15, 2022.
  • Autodesk, Meshmixer, [Online]. Available: https://www.meshmixer.com Accessed: Dec. 15, 2022.
  • MathMod, [Online]. Available: https://sourceforge.net/projects/mathmod Accessed: Dec. 15, 2022.
  • Anycubic, Plant-based UV resin, [Online]. Available: https://www.anycubic.com/collections/plant-based-uv-resin Accessed: Dec. 15, 2022.
  • A.M. Salih, M.B. Ahmad, N.A. Ibrahim, K.Z.H.M. Dahlan, R. Tajau, M.H. Mahmood, and W.M.Z.W. Yunus, Synthesis of radiation curable palm oil–based epoxy acrylate: NMR and FTIR spectroscopic investigations, Molecules, vol. 20, no. 8, pp. 14191–14211, 2015. DOI: 10.3390/molecules200814191.
  • S. Kasetaite, S. De la Flor, A. Serra, and J. Ostrauskaite, Effect of selected thiols on cross-linking of acrylated epoxidized soybean oil and properties of resulting polymers, Polymers, vol. 10, no. 4, pp. 439, 2018. DOI: 10.3390/polym10040439.
  • C. Metzcar, X.P. Ye, T. Wang, and C.J. Doona, Soybean oil-based biopolymers induced by nonthermal plasma to enhance the dyeing of para-aramids with a cationic dye, Polymers, vol. 14, no. 3, pp. 628, 2022. DOI: 10.3390/polym14030628.
  • A. Barkane, O. Platnieks, M. Jurinovs, and S. Gaidukovs, Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application, Polym. Degrad. Stab., vol. 181, pp. 109347, 2020. DOI: 10.1016/j.polymdegradstab.2020.109347.
  • G. Rosace, R. Palucci Rosa, R. Arrigo, and G. Malucelli, Photosensitive acrylates containing bio‐based epoxy‐acrylate soybean oil for 3D printing application, J. Appl. Polym. Sci., vol. 138, no. 44, pp. 51292, 2021. DOI: 10.1002/app.51292.
  • R. Gabbrielli, I.G. Turner, and C.R. Bowen, Development of modelling methods for materials to be used as bone substitutes, Key Eng. Mater., vol. 361–363, pp. 903–906, 2007. DOI: 10.4028/www.scientific.net/KEM.361-363.903.
  • J. Shi, J. Yang, L. Zhu, L. Li, Z. Li, and X. Wang, A porous scaffold design method for bone tissue engineering using triply periodic minimal surfaces, IEEE Access., vol. 6, pp. 1015–1022, 2018. DOI: 10.1109/ACCESS.2017.2777521.
  • S. Miao, W. Zhu, N.J. Castro, M. Nowicki, X. Zhou, H. Cui, J.P. Fisher, and L.G. Zhang, 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate, Sci. Rep., vol. 6, pp. 27226, 2016. DOI: 10.1038/srep27226.
  • D. Mondal, Z. Haghpanah, C.J. Huxman, S. Tanter, D. Sun, M. Gorbet, and T.L. Willett, mSLA-based 3D printing of acrylated epoxidized soybean oil-nano-hydroxyapatite composites for bone repair, Mater. Sci. Eng. C Mater. Biol. Appl., vol. 130, pp. 112456, 2021. DOI: 10.1016/j.msec.2021.112456.
  • E.F. Morgan, G.U. Unnikrisnan, and A.I. Hussein, Bone mechanical properties in healthy and diseased states, Annu. Rev. Biomed. Eng., vol. 20, no. 1, pp. 119–143, 2018. DOI: 10.1146/annurev-bioeng-062117-121139.
  • T. Arca, J. Proffitt, and P. Genever, Generating 3D tissue constructs with mesenchymal stem cells and a cancellous bone graft for orthopaedic applications, Biomed. Mater., vol. 6, no. 2, pp. 025006, 2011. DOI: 10.1088/1748-6041/6/2/025006.
  • C. Ghayor, and F.E. Weber, Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited, Front. Physiol., vol. 9, pp. 960, 2018. DOI: 10.3389/fphys.2018.00960.
  • A. Du Plessis, I. Yadroitsava, I. Yadroitsev, S.G. Le Roux, and D.C. Blaine, Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing, Virtual Phys. Prototyp., vol. 13, no. 4, pp. 266–281, 2018. DOI: 10.1080/17452759.2018.1491713.
  • J. Austermann, A.J. Redmann, V. Dahmen, A.L. Quintanilla, S.J. Mecham, and T.A. Osswald, Fiber-reinforced composite sandwich structures by co-curing with additive manufactured epoxy lattices, J. Compos. Sci., vol. 3, no. 2, pp. 53, 2019. DOI: 10.3390/jcs3020053.
  • Y. Tripathi, M. Shukla, and A.D. Bhatt, Implicit-function-based design and additive manufacturing of triply periodic minimal surfaces scaffolds for bone tissue engineering, J. Mater. Eng. Perform., vol. 28, no. 12, pp. 7445–7451, 2019. DOI: 10.1007/s11665-019-04457-6.
  • M. Saleh, S. Anwar, A.M. Al-Ahmari, and A. Alfaify, Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures, Polymers, vol. 14, no. 21, pp. 4595, 2022. DOI: 10.3390/polym14214595.
  • X. Guo, J. Ding, X. Li, S. Qu, X. Song, J.Y.H. Fuh, W.F. Lu, and W. Zhai, Enhancement in the mechanical behaviour of a schwarz primitive periodic minimal surface lattice structure design, Int. J. Mech. Sci., vol. 216, pp. 106977, 2022. DOI: 10.1016/j.ijmecsci.2021.106977.
  • I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer., vol. 152, pp. 62–71, Sept. 2018. DOI: 10.1016/j.polymer.2017.11.049.
  • Z. Cai, Z. Liu, X. Hu, H. Kuang, and J. Zhai, The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold, Bio-Des. Manuf., vol. 2, no. 4, pp. 242–255, 2019. DOI: 10.1007/s42242-019-00054-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.