554
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Eigenfrequency optimization of variable stiffness manufacturable laminates using spectral Chebyshev approach and lamination parameters

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3595-3606 | Received 16 Nov 2022, Accepted 10 Feb 2023, Published online: 23 Feb 2023

References

  • M. W. Hyer, and H. H. Lee, The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes, Compos. Struct., vol. 18, no. 3, pp. 239–261, 1991. DOI: 10.1016/0263-8223(91)90035-W.
  • F. X. Irisarri, F. Laurin, F. H. Leroy, and J. F. Maire, Computational strategy for multiobjective optimization of composite stiffened panels, Compos. Struct., vol. 93, no. 3, pp. 1158–1167, 2011. DOI: 10.1016/j.compstruct.2010.10.005.
  • H. An, S. Chen, and H. Huang, Concurrent optimization of stacking sequence and stiffener layout of a composite stiffened panel, Eng. Optim., vol. 51, no. 4, pp. 608–626, 2019. DOI: 10.1080/0305215X.2018.1492570.
  • S. W. Tsai, and H. T. Hahn, Introduction of Composite Materials. Lancaster, Pennsylvania: Lancaster, Techonomic, 1980.
  • C. Kassapoglou, Design and Analysis of Composite Structures: With Applications to Aerospace Structures, 2nd Edition. West Sussex: Wiley, 2013.
  • E. Oromiehie, B. G. Prusty, P. Compston, and G. Rajan, Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques, Compos. Struct., vol. 224, pp. 110987, 2019. DOI: 10.1016/j.compstruct.2019.110987.
  • B. C. Kim, K. Potter, and P. M. Weaver, Continuous tow shearing for manufacturing variable angle tow composites, Composites Part A, vol. 43, no. 8, pp. 1347–1356, 2012. DOI: 10.1016/j.compositesa.2012.02.024.
  • B. F. Tatting, and Z. Gurdal, “Design and manufacture of elastically tailored tow placed plates,” tech. rep., NASA Langery Research Center, NASA/CR-2002-211919, 2002.
  • A. Khani, M. M. Abdalla, Z. Gürdal, J. Sinke, A. Buitenhuis, and M. J. Van Tooren, Design, manufacturing and testing of a fibre steered panel with a large cut-out, Compos. Struct., vol. 180, no. 11, pp. 821–830, 2017. DOI: 10.1016/j.compstruct.2017.07.086.
  • Z. Gürdal, and R. Olmedo, In-plane response of laminates with spatially varying fiber orientations: Variable stiffness concept, AIAA J., vol. 31, no. 4, pp. 751–758, 1993. DOI: 10.2514/3.11613.
  • S. Setoodeh, M. M. Abdalla, and Z. Gürdal, Design of variable-stiffness laminates using lamination parameters, Composites Part B, vol. 37, no. 4–5, pp. 301–309, 2006. DOI: 10.1016/j.compositesb.2005.12.001.
  • J. M. Van Campen, and Z. Gürdal, Retrieving variable stiffness laminates from lamination parameters distribution, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, May, pp. 4–7, 2009.
  • S. T. Ijsselmuiden, Optimal Design of Variable Stiffness Composite Structures using Lamination Parameters. PhD thesis, 2011.
  • H. Akhavan, and P. Ribeiro, Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers, Compos. Struct., vol. 93, no. 11, pp. 3040–3047, 2011. DOI: 10.1016/j.compstruct.2011.04.027.
  • T. J. Dodwell, R. Butler, and A. T. Rhead, Optimum fiber steering of composite plates for buckling and manufacturability, AIAA J., vol. 54, no. 3, pp. 1146–1149, 2016. DOI: 10.2514/1.J054297.
  • Z. Pan, L. W. Zhang, and K. M. Liew, Adaptive surrogate-based harmony search algorithm for design optimization of variable stiffness composite materials, Comput. Methods Appl. Mech. Eng., vol. 379, pp. 113754, 2021. DOI: 10.1016/j.cma.2021.113754.
  • P. Hao, X. Yuan, C. Liu, B. Wang, B. Wang, H. Liu, G. Li, and F. Niu, An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng., vol. 339, no. 9, pp. 205–238, 2018. DOI: 10.1016/j.cma.2018.04.046.
  • C. S. Lopes, P. P. Camanho, Z. Gürdal, and B. F. Tatting, Progressive failure analysis of tow-placed, variable-stiffness composite panels, Int. J. Solids Struct., vol. 44, no. 25–26, pp. 8493–8516, 2007. DOI: 10.1016/j.ijsolstr.2007.06.029.
  • C. S. Lopes, Z. Gürdal, and P. P. Camanho, Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates, Comput. Struct., vol. 86, no. 9, pp. 897–907, 2008. DOI: 10.1016/j.compstruc.2007.04.016.
  • J. M. Van Campen, C. Kassapoglou, and Z. Gürdal, Generating realistic laminate fiber angle distributions for optimal variable stiffness laminates, Composites Part B, vol. 43, no. 2, pp. 354–360, 2012. DOI: 10.1016/j.compositesb.2011.10.014.
  • A. W. Blom, S. Setoodeh, J. M. Hol, and Z. Gürdal, Design of variable-stiffness conical shells for maximum fundamental eigenfrequency, Comput. Struct., vol. 86, no. 9, pp. 870–878, 2008. DOI: 10.1016/j.compstruc.2007.04.020.
  • A. W. Blom, B. F. Tatting, J. M. Hol, and Z. Gürdal, Fiber path definitions for elastically tailored conical shells, Composites Part B, vol. 40, no. 1, pp. 77–84, 2009. DOI: 10.1016/j.compositesb.2008.03.011.
  • A. Alhajahmad, and C. Mittelstedt, Minimum weight design of curvilinearly grid-stiffened variable-stiffness composite fuselage panels considering buckling and manufacturing constraints, Thin-Walled Struct., vol. 161, no. 4, pp. 107526, 2021. DOI: 10.1016/j.tws.2021.107526.
  • M. Rasool, and M. K. Singha, Stability behavior of variable stiffness composite panels under periodic in-plane shear and compression, Composites Part B, vol. 172, no. 9, pp. 472–484, 2019. DOI: 10.1016/j.compositesb.2019.05.031.
  • S. Setoodeh, M. M. Abdalla, S. T. IJsselmuiden, and Z. Gürdal, Design of variable-stiffness composite panels for maximum buckling load, Compos. Struct., vol. 87, no. 1, pp. 109–117, 2009. DOI: 10.1016/j.compstruct.2008.01.008.
  • M. Rouhi, H. Ghayoor, S. V. Hoa, and M. Hojjati, Multi-objective design optimization of variable stiffness composite cylinders, Composites Part B, vol. 69, pp. 249–255, 2015. DOI: 10.1016/j.compositesb.2014.10.011.
  • P. Hao, D. Liu, Y. Wang, X. Liu, B. Wang, G. Li, and S. Feng, Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters, Compos. Struct., vol. 219, no. 7, pp. 158–169, 2019. DOI: 10.1016/j.compstruct.2019.03.075.
  • Z. Wu, P. M. Weaver, G. Raju, and B. Chul Kim, Buckling analysis and optimisation of variable angle tow composite plates, Thin-Walled Struct., vol. 60, no. 11, pp. 163–172, 2012. DOI: 10.1016/j.tws.2012.07.008.
  • J. Stegmann, and E. Lund, Discrete material optimization of general composite shell structures, Int. J. Numer. Methods Eng., vol. 62, no. 14, pp. 2009–2027, 2005. DOI: 10.1002/nme.1259.
  • H. Fukunaga, H. Sekine, M. Sato, and A. Iino, Buckling design of symmetrically laminated plates using lamination parameters, Comput. Struct., vol. 57, no. 4, pp. 643–649, 1995. DOI: 10.1016/0045-7949(95)00050-Q.
  • G. Serhat, and I. Basdogan, Effect of aspect ratio and boundary conditions on the eigenfrequency optimization of composite panels using lamination parameters, in Proceedings of 11th ASMO-UK/ISSMO/NOED2016 International Conference on Numerical Optimisation Methods for Engineering Design, pp. 160–168, 2016.
  • M. A. Albazzan, R. Harik, B. F. Tatting, and Z. Gürdal, Efficient design optimization of nonconventional laminated composites using lamination parameters: A state of the art, Compos. Struct., vol. 209, no. 2, pp. 362–374, 2019. DOI: 10.1016/j.compstruct.2018.10.095.
  • M. M. Abdalla, S. Setoodeh, and Z. Gürdal, Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters, Compos. Struct., vol. 81, no. 2, pp. 283–291, 2007. DOI: 10.1016/j.compstruct.2006.08.018.
  • E. Demir, P. Yousefi-Louyeh, and M. Yildiz, Design of variable stiffness composite structures using lamination parameters with fiber steering constraint, Composites Part B, vol. 165, pp. 733–746, 2019. DOI: 10.1016/j.compositesb.2019.02.004.
  • Z. Hong, D. Peeters, and S. Turteltaub, An enhanced curvature-constrained design method for manufacturable variable stiffness composite laminates, Comput. Struct., vol. 238, no. 10, pp. 106284, 2020. DOI: 10.1016/j.compstruc.2020.106284.
  • D. M. Peeters, S. Hesse, and M. M. Abdalla, Stacking sequence optimisation of variable stiffness laminates with manufacturing constraints, Compos. Struct., vol. 125, pp. 596–604, 2015. DOI: 10.1016/j.compstruct.2015.02.044.
  • K. C. Wu, B. Tatting, B. Smith, R. Stevens, G. Occhipinti, J. Swift, D. Achary, and R. Thornburgh, Design and manufacturing of tow-steered composite shells using fiber placement, in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009.
  • Y. Tian, T. Shi, and Q. Xia, A parametric level set method for the optimization of composite structures with curvilinear fibers, Comput. Methods Appl. Mech. Eng., vol. 388, pp. 114236, 2022. DOI: 10.1016/j.cma.2021.114236.
  • B. C. Kim, P. M. Weaver, and K. Potter, Manufacturing characteristics of the continuous tow shearing method for manufacturing of variable angle tow composites, Composites Part A, vol. 61, no. 6, pp. 141–151, 2014. DOI: 10.1016/j.compositesa.2014.02.019.
  • A. Rashed, and E. Demir, Design of variable stiffness composites for maximum fundamental frequency considering manufacturing constraints of tow steering, Compos. Struct., vol. 284, pp. 115151–115153, 2022. DOI: 10.1016/j.compstruct.2021.115151.
  • S. T. IJsselmuiden, M. M. Abdalla, and Z. Gürdal, Optimization of variable-stiffness panels for maximum buckling load using lamination parameters, AIAA J., vol. 48, no. 1, pp. 134–143, 2010. DOI: 10.2514/1.42490.
  • G. Serhat, Design of circular composite cylinders for optimal natural frequencies, Materials, vol. 14, no. 12, pp. 3203, 2021. DOI: 10.3390/ma14123203.
  • G. Serhat, Concurrent lamination and tapering optimization of cantilever composite plates under shear, Materials., vol. 14, no. 9, pp. 2285, 2021. DOI: 10.3390/ma14092285.
  • J. M. Van Campen, C. Kassapoglou, and Z. Gürdal, Design of fiber-steered variable-stiffness laminates based on a given lamination parameters distribution, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, April, 2011.
  • M. M. Gozum, G. Serhat, and I. Basdogan, A semi-analytical model for dynamic analysis of non-uniform plates, Appl. Math. Modell., vol. 76, no. 12, pp. 883–899, 2019. DOI: 10.1016/j.apm.2019.07.013.
  • T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering., vol. 194, no. 39-41, pp. 4135–4195, 2005. DOI: 10.1016/j.cma.2004.10.008.
  • B. Bediz, Three-dimensional vibration behavior of bi-directional functionally graded curved parallelepipeds using spectral Tchebychev approach, Compos. Struct., vol. 191, pp. 100–112, 2018. DOI: 10.1016/j.compstruct.2018.02.035.
  • B. Bediz, A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary geometry, J. Sound Vib., vol. 432, no. 10, pp. 272–289, 2018. DOI: 10.1016/j.jsv.2018.06.040.
  • D. M. Li, C. A. Featherston, and Z. Wu, An element-free study of variable stiffness composite plates with cutouts for enhanced buckling and post-buckling performance, Comput. Methods Appl. Mech. Eng., vol. 371, no. 11, pp. 113314, 2020. DOI: 10.1016/j.cma.2020.113314.
  • M. R. Anamagh, and B. Bediz, Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Tchebychev approach, Compos. Struct., vol. 253, no. July, pp. 112765, 2020. DOI: 10.1016/j.compstruct.2020.112765.
  • G. Serhat, M. R. Anamagh, B. Bediz, and I. Basdogan, Dynamic analysis of doubly curved composite panels using lamination parameters and spectral-Tchebychev method, Comput. Struct., vol. 239, pp. 106294, 2020. DOI: 10.1016/j.compstruc.2020.106294.
  • P. Khandar Shahabad, M. R. Anamagh, and B. Bediz, Design of laminated conical shells using spectral Chebyshev method and lamination parameters, Compos. Struct., vol. 281, no. 2, pp. 114969, 2022. DOI: 10.1016/j.compstruct.2021.114969.
  • G. Serhat, B. Bediz, and I. Basdogan, Unifying lamination parameters with spectral-Tchebychev method for variable-stiffness composite plate design, Compos. Struct., vol. 242, no. 6, pp. 112183, 2020. DOI: 10.1016/j.compstruct.2020.112183.
  • T. Shafighfard, E. Demir, and M. Yildiz, Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints, Compos. Struct., vol. 226, no. 10, pp. 111280, 2019. DOI: 10.1016/j.compstruct.2019.111280.
  • Z. Gurdal, R. T. Haftka, and P. Hajela, Design and Optimization of Laminated Composite Materials, West Sussex: John Wiley & Sons, 1999.
  • V. B. Hammer, M. P. Bendsoe, R. Lipton, and P. Pedersen, Parametrization in laminate design for optimal compliance, Int. J. Solids Struct., vol. 34, no. 4, pp. 415–434, 1997. DOI: 10.1016/S0020-7683(96)00023-6.
  • S. Setoodeh, Optimal Design of Variable-Stiffness Fiber-Reinforced Composites Using Cellular Automata, PhD thesis, Virginia Polytechnic Institute and State University, 2005.
  • B. Yagci, S. Filiz, L. A. Romero, and O. B. Ozdoganlar, A spectral-Tchebychev technique for solving linear and nonlinear beam equations, J. Sound Vib., vol. 321, no. 1–2, pp. 375–404, 2009. DOI: 10.1016/j.jsv.2008.09.040.
  • S. Filiz, B. Bediz, L. Romero, and O. B. Ozdoganlar, Three dimensional dynamics of pretwisted beams: A spectral-Tchebychev solution, J. Sound Vib., vol. 333, no. 10, pp. 2823–2839, 2014. DOI: 10.1016/j.jsv.2014.01.010.
  • D. M. Peeters, G. G. Lozano, and M. M. Abdalla, Effect of steering limit constraints on the performance of variable stiffness laminates, Comput. Struct., vol. 196, no. 2, pp. 94–111, 2018. DOI: 10.1016/j.compstruc.2017.11.002.
  • A. W. Blom, M. M. Abdalla, and Z. Gürdal, Optimization of course locations in fiber-placed panels for general fiber angle distributions, Compos. Sci. Technol., vol. 70, no. 4, pp. 564–570, 2010. DOI: 10.1016/j.compscitech.2009.12.003.
  • G. Serhat, and I. Basdogan, Lamination parameter interpolation method for design of manufacturable variable-stiffness composite panels, AIAA J., vol. 57, no. 7, pp. 3052–3065, 2019. DOI: 10.2514/1.J057902.
  • J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., New York, NY: Dover, 2001.
  • R. Anay, D. Miller, A. Tessema, R. Wehbe, P. Ziehl, B. Tatting, Z. Gurdal, R. Harik, and A. Kidane, An experimental investigation concerning the effect of AFP defects on progressive damage in CFRP coupons, Compos. Struct., vol. 279, no. 1, pp. 114725, 2022. DOI: 10.1016/j.compstruct.2021.114725.
  • S. Alan, and B. Bediz, A novel electromechanical spectral element method for piezoelectric energy harvester plates, J. Sound Vib., vol. 505, no. 8, pp. 116139, 2021. DOI: 10.1016/j.jsv.2021.116139.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.