203
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate

, , &
Pages 3700-3724 | Received 02 Jul 2022, Accepted 16 Feb 2023, Published online: 08 Mar 2023

References

  • M. F. Caliri, A. J. M. Ferreira, and V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method, Compos. Struct., vol. 156, pp. 63–77, 2016. DOI: 10.1016/j.compstruct.2016.02.036.
  • D. Shahgholian-Ghahfarokhi, M. Safarpour, and A. Rahimi, Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs), Mech. Based Des. Struct. Mach., vol. 49, pp. 81–102, 2021. DOI: 10.1080/15397734.2019.1666723.
  • R. Mindlin, A. Schacknow, and H. Deresiewicz, Flexural vibrations of rectangular plates, J. Appl. Mech., vol. 23, pp. 430–436, 1956. DOI: 10.1115/1.4011349.
  • M. A. Al-Osta, An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects, Compos. Struct., vol. 297, pp. 115984, 2022. DOI: 10.1016/j.compstruct.2022.115984.
  • A. Rahimi, and A. Alibeigloo, High-accuracy approach for thermomechanical vibration analysis of FG-Gplrc fluid-conveying viscoelastic thick cylindrical shell, Int. J. Appl. Mech., vol. 12, pp. 2050073, 2020. DOI: 10.1142/S1758825120500738.
  • M. Al-Furjan, C. Yin, X. Shen, R. Kolahchi, M. S. Zarei, and M. Hajmohammad, Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate, Mech. Syst. Signal Process., vol. 178, pp. 109269, 2022. DOI: 10.1016/j.ymssp.2022.109269.
  • K. Asemi, M. Babaei, and F. Kiarasi, Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets, Mech. Based Des. Struct. Mach., vol. 50, pp. 3853–3881, 2022. DOI: 10.1080/15397734.2020.1822865.
  • M. Safarpour, A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi, Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions, Mech. Based Des. Struct. Mach., vol. 49, pp. 707–737, 2021. DOI: 10.1080/15397734.2019.1701491.
  • C. Gonenli, and O. Das, Free vibration analysis of circular and annular thin plates based on crack characteristics, Rep. Mech. Eng., vol. 3, pp. 248–257, 2022. DOI: 10.31181/rme20016032022g.
  • M. Safarpour, A. R. Rahimi, and A. Alibeigloo, Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM, Mech. Based Des. Struct. Mach., vol. 48, pp. 496–524, 2020. DOI: 10.1080/15397734.2019.1646137.
  • M. Javani, Y. Kiani, and M. R. Eslami, Thermal buckling of FG graphene platelet reinforced composite annular sector plates, Thin-Walled Struct., vol. 148, pp. 106589, 2020. DOI: 10.1016/j.tws.2019.106589.
  • X. Fang, Y. Hu, C. Zhu, S. An, and L. Chen, Size-dependent vibration of laminated functionally graded curved beams covered with piezoelectric layers, Mech. Adv. Mater. Struct., vol. 0, pp. 1–10, 2022. DOI: 10.1080/15376494.2022.2072546.
  • C. Zhu, X. Fang, and J. Liu, A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells, Appl. Math. Modell., vol. 77, pp. 137–168, 2020. DOI: 10.1016/j.apm.2019.07.027.
  • Y. Guo, B. Huang, L. Hua, J. Chen, and J. Wang, Modeling of partially delaminated composite plates resting on two-parameter elastic foundation with improved layerwise theory, Mech. Adv. Mater. Struct., pp. 1–16, 2022. DOI: 10.1080/15376494.2022.2044571.
  • J.-H. Kim, W. Lu, R. Lubbad, S. Løset, and B.-S. Jang, Dynamic bending of an ice wedge resting on a winkler-type elastic foundation, Cold Regions Sci. Technol, vol. 199, pp. 103579, 2022. DOI: 10.1016/j.coldregions.2022.103579.
  • H. Chaabani, S. Mesmoudi, L. Boutahar, and K. E. Bikri, Buckling of porous FG sandwich plates subjected to various non-uniform compressions and resting on Winkler–Pasternak elastic foundation using a finite element model based on the high-order shear deformation theory, Acta Mech., vol. 233, pp. 5359–5376, 2022. DOI: 10.1007/s00707-022-03388-z.
  • Y. Yuan, Z. Niu, and J. Smitt, Magneto-hygro-thermal vibration analysis of the viscoelastic nanobeams reinforcedwith carbon nanotubes resting on Kerr’s elastic foundation based on NSGT, Adv. Compos. Mater., pp. 1–23, 2022. DOI: 10.1080/09243046.2022.2122766.
  • P.-C. Nguyen, Q. H. Pham, T. T. Tran, and T. Nguyen-Thoi, Effects of partially supported elastic foundation on free vibration of FGP plates using ES-MITC3 elements, Ain Shams Eng. J., vol. 13, pp. 101615, 2022. DOI: 10.1016/j.asej.2021.10.010.
  • M. Javani, Y. Kiani, and M. R. Eslami, Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation, Compos. Struct., vol. 261, pp. 113515, 2021. DOI: 10.1016/j.compstruct.2020.113515.
  • D. Younesian, A. Hosseinkhani, H. Askari, and E. Esmailzadeh, Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modeling and applications, Nonlinear Dyn., vol. 97, pp. 853–895, 2019. DOI: 10.1007/s11071-019-04977-9.
  • Y. Huang, J. Huang, W. Zhang, and X. Liu, Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso-and macro-models, Compos. Struct., vol. 309, pp. 116750, 2023. DOI: 10.1016/j.compstruct.2023.116750.
  • X. Pan, W. Wu, X. Yu, L. Lu, C. Guo, and Y. Zhao, Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 °C, Supercond. Sci. Technol., vol. 36, no. 3, pp. 034004, 2023. DOI: 10.1088/1361-6668/acb740.
  • C. Zhang, and M. Abedini, Application of Lagrangian approach to generate PI diagrams for RC columns exposed to extreme dynamic loading, Adv. Concr. Constr., vol. 14, pp. 153–167, 2022.
  • Y. Huang, W. Zhang, and X. Liu, Assessment of diagonal macrocrack-induced debonding mechanisms in FRP-strengthened RC beams, J. Compos. Constr., vol. 26, no. 5, pp. 04022056, 2022. DOI: 10.1061/(ASCE)CC.1943-5614.0001255.
  • H. Zhang, et al., Numerical study on welding residual stress distribution of corrugated steel webs, Metals., vol. 12, no. 11, pp. 1831, 2022. DOI: 10.3390/met12111831.
  • S. Huang, M. Huang, and Y. Lyu, Seismic performance analysis of a wind turbine with a monopile foundation affected by sea ice based on a simple numerical method, Eng. Appl. Comput. Fluid Mech., vol. 15, no. 1, pp. 1113–1133, 2021. DOI: 10.1080/19942060.2021.1939790.
  • J. Li, L. Zhou, S. Li, G. Lin, and Z. Ding, Soil–structure interaction analysis of nuclear power plant considering three-dimensional surface topographic irregularities based on automatic octree mesh, Eng. Struct., vol. 275, pp. 115161, 2023. DOI: 10.1016/j.engstruct.2022.115161.
  • J. Li, F. Cheng, G. Lin, and C. Wu, Improved hybrid method for the generation of ground motions compatible with the multi-damping design spectra, J. Earthquake Eng., vol. 0, pp. 1–27, 2022. DOI: 10.1080/13632469.2022.2095059.
  • S. Huang, Y. Lyu, H. Sha, and L. Xiu, Seismic performance assessment of unsaturated soil slope in different groundwater levels, Landslides., vol. 18, no. 8, pp. 2813–2833, 2021. DOI: 10.1007/s10346-021-01674-w.
  • J. Li, M. Chen, and Z. Li, Improved soil–structure interaction model considering time-lag effect, Comput. Geotech., vol. 148, no. 2022, pp. 104835, 2022. DOI: 10.1016/j.compgeo.2022.104835.
  • X. Xiao, H. Zhang, Z. Li, F. Chen, and A. Rasulo, Effect of temperature on the fatigue life assessment of suspension bridge steel deck welds under dynamic vehicle loading, Math. Prob. Eng., pp. 1–14, 2022.
  • G. Zhou, R. Zhang, and S. Huang, Generalized buffering algorithm, IEEE Access., vol. 9, pp. 27140–27157, 2021. DOI: 10.1109/ACCESS.2021.3057719.
  • Z. Zhang, Q. Yang, Z. Yu, H. Wang, and T. Zhang, Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding, Mater. Charact., vol. 189, pp. 111962, 2022. DOI: 10.1016/j.matchar.2022.111962.
  • C. Zhu, X. Fang, J. Liu, and G. Nie, Smart control of large amplitude vibration of porous piezoelectric conical sandwich panels resting on nonlinear elastic foundation, Compos. Struct., vol. 246, pp. 112384, 2020. DOI: 10.1016/j.compstruct.2020.112384.
  • X.-Q. Fang, H.-W. Ma, and C.-S. Zhuc, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struct., vol. 0, pp. 1–8, 2023. DOI: 10.1080/15376494.2022.2158503.
  • P. T. T. Phuong, et al., Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates, Nano Energy., vol. 95, pp. 107032, 2022. DOI: 10.1016/j.nanoen.2022.107032.
  • L. Wang, J.-A. Wang, J.-M. Jin, L. Yang, S.-W. Wu, and C. C. Zhou, Theoretical modeling, verification, and application study on a novel bending-bending coupled piezoelectric ultrasonic transducer, Mech. Syst. Signal Process., vol. 168, pp. 108644, 2022. DOI: 10.1016/j.ymssp.2021.108644.
  • S. Rezvani, Y. S. Chuo, J. Lee, and S. S. Park, Hybrid sintering of CNT/PZT ceramics using microwave oven, Ceram. Int., vol. 48, pp. 14684–14696, 2022. DOI: 10.1016/j.ceramint.2022.02.003.
  • O. Kiprijanovič, L. Ardaravičius, and S. Ašmontas, Radiating Barkhausen-type pulses during generation of high-voltage pulse by piezoelectric igniters, Integr. Ferroelectr., vol. 220, pp. 120–131, 2021. DOI: 10.1080/10584587.2021.1921541.
  • M. Ling, J. Wang, M. Wu, L. Cao, and B. Fu, Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves, Sens. Actuators A Phys., vol. 324, pp. 112687, 2021. DOI: 10.1016/j.sna.2021.112687.
  • Z. Yang, et al., Actuation waveform optimization via multi-pulse crosstalk modulation for stable ultra-high frequency piezoelectric drop-on-demand printing, Additive Manufact., vol. 60 pp. 103165, 2022. DOI: 10.1016/j.addma.2022.103165.
  • H. Wang, Y. Ma, Q. Zheng, K. Cao, Y. Lu, and H. Xie, Review of recent development of MEMS speakers, Micromachines, vol. 12, pp. 1257, 2021. DOI: 10.3390/mi12101257.
  • K. Al-Basyouni, B. Dakhel, E. Ghandourah, and A. Algarni, An analytical solution for the problem of stresses in magneto-piezoelectric thermoelastic material under the influence of rotation, Phys. Mesomech., vol. 23, pp. 362–368, 2020. DOI: 10.1134/S1029959920040116.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, vol. 3, no. 12, pp. 3884–3890, 2009. DOI: 10.1021/nn9010472.
  • H. Beitollahi, Z. Dourandish, S. Tajik, and P. M. Jahani, Application of Conductive Polymer Nanocomposites. In: Conductive Polymers in Analytical Chemistry, ACS Publications, Washington, D.C., pp. 313–344, 2022.
  • H. Wang, and H. Shin, Influence of nanoparticulate diameter on fracture toughness enhancement of polymer nanocomposites by an interfacial debonding mechanism: A multiscale study, Eng. Fract. Mech., vol. 261, pp. 108261, 2022. DOI: 10.1016/j.engfracmech.2022.108261.
  • M. A. Alazwari, A. M. Zenkour, and M. Sobhy, Hygrothermal Buckling of Smart Graphene/Piezoelectric Nanocomposite Circular Plates on an Elastic Substrate via DQM, Mathematics, vol. 10, pp. 2638, 2022. DOI: 10.3390/math10152638.
  • Y. Yang, B. Chen, W. Lin, Y. Li, and Y. Dong, Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation, Aerosp. Sci. Technol., vol. 110, pp. 106495, 2021. DOI: 10.1016/j.ast.2021.106495.
  • L. Wang, Y. Liu, D. Liu, and Z. Wu, A novel dynamic reliability-based topology optimization (DRBTO) framework for continuum structures via interval-process collocation and the first-passage theories, Comput. Methods Appl. Mech. Eng., vol. 386, pp. 114107, 2021. DOI: 10.1016/j.cma.2021.114107.
  • H. Esmaeili, and Y. Kiani, Vibrations of graphene platelet reinforced composite doubly curved shells subjected to thermal shock, Mech. Based Des. Struct. Mach., pp. 1–30, 2022. DOI: 10.1080/15397734.2022.2120499.
  • A. M. Zenkour, Three-dimensional thermal shock plate problem within the framework of different thermoelasticity theories, Compos. Struct., vol. 132, pp. 1029–1042, 2015. DOI: 10.1016/j.compstruct.2015.07.013.
  • W. Wang, Application of 2D coupled algorithms to thermally induced dynamics of temperature-dependent nanocomposite cylindrical panels under transient heat shock, Eng. Anal. Boundary Elements, vol. 144, pp. 556–568, 2022. DOI: 10.1016/j.enganabound.2022.08.022.
  • H. Guo, L. Yaning, C. Li, and T. He, Structural dynamic responses of layer-by-layer viscoelastic sandwich nanocomposites subjected to time-varying symmetric thermal shock loadings based on nonlocal thermo-viscoelasticity theory, Microsyst. Technol., vol. 28, no.5, pp. 1143–1165, 2022. DOI: 10.1007/s00542-022-05272-1.
  • T. Y. Zhao, Y. S. Cui, Y. Q. Wang, and H. G. Pan, Vibration characteristics of graphene nanoplatelet reinforced disk-shaft rotor with eccentric mass, Mech. Adv. Mater. Struct., vol. 0, pp. 1–21, 2021. DOI: 10.1080/15376494.2021.1904525.
  • D. G. Ninh, N. M. Quan, and V. N. V. Hoang, Thermally vibrational analyses of functionally graded graphene nanoplatelets reinforced funnel shells with different complex shapes surrounded by elastic foundation, Mech. Adv. Mater. Struct., vol. 29, no.26, pp. 4654–4676, 2021.
  • K. Chu, C. Jia, and W. Li, Effective thermal conductivity of graphene-based composites, Appl. Phys. Lett., vol. 101, pp. 121916, 2012.
  • C. Chang-Qing, and S. Ya-Peng, Stability analysis of piezoelectric circular cylindrical shells, Journal of applied mechanics, vol.64, no. 4. pp. 847–852, 1997.
  • H. Cabral, et al., Experimental and numerical vibration correlation of pre-stressed laminated reinforced panel, Mech. Adv. Mater. Struct., vol. 29, no.15, pp. 2165–2175, 2020.
  • B. Yang, S. Kitipornchai, Y.-F. Yang, and J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates, Appl. Math. Model., vol. 49, pp. 69–86, 2017.
  • A. Alibeigloo, Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method, Mech. Adv. Mater. Struct., vol. 25, pp. 766–784, 2018.
  • A. Alibeigloo, and A. A. Pasha Zanoosi, Thermo-electro-elasticity solution of functionally graded carbon nanotube reinforced composite cylindrical shell embedded in piezoelectric layers, Comp. Struct., vol. 173, pp. 268–280, 2017. DOI: 10.1016/j.compstruct.2017.04.027.
  • A. Alibeigloo, Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers, Compos. Struct., vol. 118, pp. 482–495, 2014.
  • W. Liu, L. Deng, Z. Cai, D. Li, and A. Rahimi, Impact of in-plane follower force on the frequency response of the hybrid angle-ply laminated system via dynamic simulation and generalized differential quadrature framework, Eng. Comput., vol. 38, no.(Suppl 5), pp. 3743–3760, 2021.
  • A. Rahimi, A. Alibeigloo, and M. Safarpour, Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell, J. Vibrat. Control, vol. 26, pp. 1627–1645, 2020. DOI: 10.1177/1077546320902340.
  • F. Tornabene, N. Fantuzzi, F. Ubertini, and E. Viola, Strong formulation finite element method based on differential quadrature: A survey, Appl. Mech. Rev., vol. 67, 2015.
  • S.-N. Nguyen, M. Cho, J.-S. Kim, and J.-W. Han, Improved thermo-mechanical-viscoelastic analysis of laminated composite structures via the enhanced Lo–Christensen–Wu theory in the laplace domain, Mech. Adv. Mater. Struct., pp. 1–17, 2022.
  • F. Durbin, Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method, The Computer Journal., vol. 17, pp. 371–376, 1974.
  • A. Alibeigloo, Thermo-elasticity solution of functionally graded plates integrated with piezoelectric sensor and actuator layers, J. Thermal Stresses, vol. 33, pp. 754–774, 2010.
  • D. Liu, Z. Li, S. Kitipornchai, and J. Yang, Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates, Compos. Struct., vol. 229, pp. 111453, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.