322
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Definition of mode-I fracture behaviour of plain and fiber reinforced various grades of concretes by digital image analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3725-3739 | Received 04 Jul 2022, Accepted 17 Feb 2023, Published online: 06 Mar 2023

References

  • N. Ranjbar, and M. Zhang, Fiber-reinforced geopolymer composites: A review, Cem. Concr. Compos., vol. 107, pp. 103498, 2020. DOI: 10.1016/j.cemconcomp.2019.103498.
  • M. Nematzadeh, J. Dashti, H. Sabetifar, A. Gholampour, and A. Arjomandi, Combined effect of handmade CFRP strip stirrups and forta-ferro fibers on shear behavior of concrete beams, Arch. Civ. Mech. Eng., vol. 22, no. 4, pp. 156, 2022. DOI: 10.1007/s43452-022-00469-7.
  • G. Kaplan, O. Y. Bayraktar, A. Gholampour, O. Gencel, F. Koksal, and T. Ozbakkaloglu, Mechanical and durability properties of steel fiber-reinforced concrete containing coarse recycled concrete aggregate, Struct. Concr., vol. 22, no. 5, pp. 2791–2812, 2021. DOI: 10.1002/suco.202100028.
  • H. Sabetifar, and M. Nematzadeh, An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming, Structures, vol. 34, pp. 4965–4976, 2021. DOI: 10.1016/j.istruc.2021.10.075.
  • M. Nematzadeh, A. Maghferat, and M. R. Zadeh Herozi, Mechanical properties and durability of compressed nylon aggregate concrete reinforced with Forta-Ferro fiber: Experiments and optimization, J. Build. Eng., vol. 41, pp. 102771, 2021. DOI: 10.1016/j.jobe.2021.102771.
  • J. P. Romualdi, and G. B. Batson, Mechanics of crack arrest in concrete, J. Eng. Mech. Div., vol. 89, no. 3, pp. 147–168, 1963. DOI: 10.1061/JMCEA3.0000381.
  • M. Gümüş, and A. Arslan, Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios, Structures, vol. 20, pp. 1–10, 2019. DOI: 10.1016/j.istruc.2019.02.018.
  • F. Isla, G. Ruano, and B. Luccioni, Analysis of steel fibers pull-out. Experimental Study, Constr. Build. Mater., vol. 100, pp. 183–193, 2015. DOI: 10.1016/j.conbuildmat.2015.09.034.
  • A. Beglarigale, and H. Yazıcı, Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar, Constr. Build. Mater., vol. 75, pp. 255–265, 2015. DOI: 10.1016/j.conbuildmat.2014.11.037.
  • M. Pajak, and T. Ponikiewski, Effect of the shape of steel fibers on the mechanical properties of reinforced self-compacting concrete, Cem. Wapno Beton., vol. 18, no. 6, pp. 335–342, 2013.
  • P. Xu, J. Ma, Y. Ding, and M. Zhang, Influences of steel fiber content on size effect of the fracture energy of high-strength concrete, KSCE J. Civ. Eng., vol. 25, no. 3, pp. 948–959, 2021. DOI: 10.1007/s12205-021-0141-7.
  • M. Ghasemi, M. R. Ghasemi, and S. R. Mousavi, Studying the fracture parameters and size effect of steel fiber-reinforced self-compacting concrete, Constr. Build. Mater., vol. 201, pp. 447–460, 2019. DOI: 10.1016/j.conbuildmat.2018.12.172.
  • M. T. Kazemi, H. Golsorkhtabar, M. H. A. Beygi, and M. Gholamitabar, Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods, Constr. Build. Mater., vol. 142, pp. 482–489, 2017. DOI: 10.1016/j.conbuildmat.2017.03.089.
  • G. H. Mahmud, Z. Yang, and A. M. T. Hassan, Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams, Constr. Build. Mater., vol. 48, pp. 1027–1034, 2013. DOI: 10.1016/j.conbuildmat.2013.07.061.
  • S. Şener, M. Begimgil, and Ç. Belgin, Size effect on failure of concrete beams with and without steel fibers, J. Mater. Civ. Eng., vol. 14, no. 5, pp. 436–440, 2002. DOI: 10.1061/(ASCE)0899-1561(2002)14:5(436).
  • S. J. Lee, Y. Hong, A. H. Eom, and J. P. Won, Effect of steel fibres on fracture parameters of cementitious composites, Compos. Struct., vol. 204, pp. 658–663, 2018. DOI: 10.1016/j.compstruct.2018.08.002.
  • F. Bencardino, L. Rizzuti, G. Spadea, and R. N. Swamy, Experimental evaluation of fiber reinforced concrete fracture properties, Composites Part B, vol. 41, no. 1, pp. 17–24, 2010. DOI: 10.1016/j.compositesb.2009.09.002.
  • M. T. Kazemi, F. Fazileh, and M. A. Ebrahiminezhad, Cohesive crack model and fracture energy of steel-fiber-reinforced-concrete notched cylindrical specimens, J. Mater. Civ. Eng., vol. 19, no. 10, pp. 884–890, 2007. DOI: 10.1061/(ASCE)0899-1561(2007)19:10(884).
  • J. A. O. Barros, and J. S. Cruz, Fracture energy of steel fiber-reinforced concrete, Mech. Compos. Mater. Struct., vol. 8, no. 1, pp. 29–45, 2001. DOI: 10.1080/10759410119428.
  • H. M. Magbool, and A. M. Zeyad, The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete, Constr. Build. Mater., vol. 312, pp. 125444, 2021. DOI: 10.1016/j.conbuildmat.2021.125444.
  • J. Wang, J. Xie, J. He, M. Sun, J. Yang, and L. Li, Combined use of silica fume and steel fibre to improve fracture properties of recycled aggregate concrete exposed to elevated temperature, J Mater Cycles Waste Manag., vol. 22, no. 3, pp. 862–877, 2020. DOI: 10.1007/s10163-020-00990-y.
  • A. H. A. Raheem, M. Mahdy, and A. A. Mashaly, Mechanical and fracture mechanics properties of ultra-high-performance concrete, Constr. Build. Mater., vol. 213, pp. 561–566, 2019. DOI: 10.1016/j.conbuildmat.2019.03.298.
  • L. Qing, Y. Cheng, and R. Mu, Toughness enhancement and equivalent initial fracture toughness of cementitious composite reinforced with aligned steel fibres, Fatigue Fract. Eng. Mater. Struct., vol. 42, no. 11, pp. 2533–2543, 2019. DOI: 10.1111/ffe.13102.
  • T. Simões, C. Octávio, J. Valença, H. Costa, D. Dias-da-Costa, and E. Júlio, Influence of concrete strength and steel fibre geometry on the fibre/matrix interface, Composites Part B, vol. 122, pp. 156–164, 2017. DOI: 10.1016/j.compositesb.2017.04.010.
  • P. Liu, C. Guo, S. Cui, Q. Wu, and W. Xia, Fracture performance improvement and fracture process simulation of concrete for shotcrete use in hot and dry environments, Fatigue Fract. Eng. Mater. Struct., vol. 45, no. 5, pp. 1317–1331, 2022. DOI: 10.1111/ffe.13662.
  • X. Shi, L. B. Norambuena, C. Tavares, and Z. Grasley, Semicircular bending fracture test to evaluate fracture properties and ductility of cement mortar reinforced by scrap tire recycled steel fiber, Eng. Fract. Mech., vol. 236, pp. 107228, 2020. DOI: 10.1016/j.engfracmech.2020.107228.
  • C. Fu, H. Ye, K. Wang, K. Zhu, and C. He, Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC), Composites Part B, vol. 160, pp. 158–166, 2019. DOI: 10.1016/j.compositesb.2018.10.045.
  • M. Ghasemi, M. R. Ghasemi, and S. R. Mousavi, Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters, Constr. Build. Mater., vol. 162, pp. 674–682, 2018. DOI: 10.1016/j.conbuildmat.2017.11.141.
  • G. M. Chen, H. Yang, C. J. Lin, J. F. Chen, Y. H. He, and H. Z. Zhang, Fracture behaviour of steel fibre reinforced recycled aggregate concrete after exposure to elevated temperatures, Constr. Build. Mater., vol. 128, pp. 272–286, 2016. DOI: 10.1016/j.conbuildmat.2016.10.072.
  • Y. C. Guo, J. H. Zhang, G. Chen, G. M. Chen, and Z. H. Xie, Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber, Constr. Build. Mater., vol. 53, pp. 32–39, 2014. DOI: 10.1016/j.conbuildmat.2013.11.075.
  • J. Barros, E. Pereira, and S. Santos, Lightweight panels of steel fiber-reinforced self-compacting concrete, J. Mater. Civ. Eng., vol. 19, no. 4, pp. 295–304, 2007. DOI: 10.1061/(ASCE)0899-1561(2007)19:4(295).
  • S. Zhao, L. Jiang, and H. Chu, A preliminary investigation of energy consumption in fracture of ultra-high performance concrete, Constr. Build. Mater., vol. 237, pp. 117634, 2020. DOI: 10.1016/j.conbuildmat.2019.117634.
  • L. E. T. Ferreira, Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete, Mech. Compos. Mater., vol. 43, no. 5, pp. 479–486, 2007. DOI: 10.1007/s11029-007-0045-8.
  • R. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. T. Leung, Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete, Build. Environ., vol. 37, no. 12, pp. 1361–1367, 2002. DOI: 10.1016/S0360-1323(01)00109-3.
  • M. Taylor, F. D. Lydon, and B. I. G. Barr, Toughness measurements on steel fibre-reinforced high strength concrete, Cem. Concr. Compos., vol. 19, no. 4, pp. 329–340, 1997. DOI: 10.1016/S0958-9465(97)00036-X.
  • D. Y. Yoo, Y. S. Yoon, and N. Banthia, Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams, Constr. Build. Mater., vol. 93, pp. 477–485, 2015. DOI: 10.1016/j.conbuildmat.2015.06.006.
  • H. Sadaghian, M. Pourbaba, S. Zeinali Andabili, and A. Mirmiran, Experimental and numerical study of flexural properties in UHPFRC beams with and without an initial notch, Constr. Build. Mater., vol. 268, pp. 121196, 2021. DOI: 10.1016/j.conbuildmat.2020.121196.
  • RILEM_TC162-TDF, Test and design methods for steel fibre reinforced concrete: bending test, Mater. Struct., vol. 35, no. 253, pp. 579–582, 2002.
  • RILEM_TC50-FMC, Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, Mater. Struct., vol. 18, no. 4, pp. 287–290, 1985. DOI: 10.1007/BF02472918.
  • JCI-S-001-2003, Method of Test for Fracture Energy of Concrete by Use of Notched Beam, Japan Concrete Institute Standard, Tokyo, 2003.
  • BS EN 14651, Test method for Metallic Fibre Concrete-Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual), European Committee for Standardization, Brussels, 2005.
  • fib, fib Model Code For Concrete Structures 2010. Ernst & Sohn, Lausanne, 2013.
  • Ł. Skarżyński, E. Syroka, and J. Tejchman, Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams, Strain, vol. 47, no. s1, pp. e319–e332, 2011. DOI: 10.1111/j.1475-1305.2008.00605.x.
  • Ł. Skarżyński, and J. Tejchman, Experimental investigations of fracture process using DIC in plain and reinforced concrete beams under bending, Strain, vol. 49, no. 6, pp. 521–543, 2013. DOI: 10.1111/str.12064.
  • J. Blaber, B. Adair, and A. Antoniou, Ncorr: Open-source 2D digital image correlation Matlab software, Exp. Mech., vol. 55, no. 6, pp. 1105–1122, 2015. DOI: 10.1007/s11340-015-0009-1.
  • RILEM_TC162-TDF, Test and design methods for steel fibre reinforced concrete: sigma-epsilon design method, Mater. Struct., vol. 36, no. 262, pp. 560–567, 2003.
  • R. F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cem. Concr. Compos., vol. 19, no. 2, pp. 107–122, 1997. DOI: 10.1016/S0958-9465(96)00046-7.
  • C. Lin, O. Kayali, E. V. Morozov, and D. J. Sharp, Influence of fibre type on flexural behaviour of self-compacting fibre reinforced cementitious composites, Cem. Concr. Compos., vol. 51, pp. 27–37, 2014. DOI: 10.1016/j.cemconcomp.2014.03.007.
  • Y. Ding, Investigations into the relationship between deflection and crack mouth opening displacement of SFRC beam, Constr. Build. Mater., vol. 25, no. 5, pp. 2432–2440, 2011. DOI: 10.1016/j.conbuildmat.2010.11.055.
  • F. Aslani, and M. Bastami, Relationship between deflection and crack mouth opening displacement of self-compacting concrete beams with and without fibers, Mech. Adv. Mater. Struct., vol. 22, no. 11, pp. 956–967, 2015. DOI: 10.1080/15376494.2014.906689.
  • T. Almusallam, S. M. Ibrahim, Y. Al-Salloum, A. Abadel, and H. Abbas, Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete, Cem. Concr. Compos., vol. 74, pp. 201–217, 2016. DOI: 10.1016/j.cemconcomp.2016.10.002.
  • S. Bhowmik, and S. Ray, An experimental approach for characterization of fracture process zone in concrete, Eng. Fract. Mech., vol. 211, pp. 401–419, 2019. DOI: 10.1016/j.engfracmech.2019.02.026.
  • H. Cifuentes, and B. L. Karihaloo, Determination of size-independent specific fracture energy of normal- and high-strength self-compacting concrete from wedge splitting tests, Constr. Build. Mater., vol. 48, pp. 548–553, 2013. DOI: 10.1016/j.conbuildmat.2013.07.062.
  • Z. P. Ba < zant, and M. T. Kazemi, Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete, Int. J. Fract., vol. 44, no. 2, pp. 111–131, 1990. DOI: 10.1007/BF00047063.
  • P. Soroushian, H. Elyamany, A. Tlili, and K. Ostowari, Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers, Cem. Concr. Compos., vol. 20, no. 1, pp. 67–78, 1998. DOI: 10.1016/S0958-9465(97)87390-8.
  • A. Hillerborg, M. Modéer, and P. E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976. DOI: 10.1016/0008-8846(76)90007-7.
  • C. Rosselló, M. Elices, and G. V. Guinea, Fracture of model concrete: 2. Fracture energy and characteristic length, Cem. Concr. Res., vol. 36, no. 7, pp. 1345–1353, 2006. DOI: 10.1016/j.cemconres.2005.04.016.
  • Z. P. Bažant, and G. Pijaudier‐Cabot, Measurement of characteristic length of nonlocal continuum, J. Eng. Mech., vol. 115, no. 4, pp. 755–767, 1989. DOI: 10.1061/(ASCE)0733-9399(1989)115:4(755).
  • Ł. Skarżyński, and J. Tejchman, Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography, Strain, vol. 52, no. 1, pp. 26–45, 2016. DOI: 10.1111/str.12168.
  • Y. Jenq, and S. P. Shah, Two parameter fracture model for concrete, J. Eng. Mech., vol. 111, no. 10, pp. 1227–1241, 1985. DOI: 10.1061/(ASCE)0733-9399(1985)111:10(1227).
  • B. L. Karihaloo, and P. Nallathambi, Effective crack model for the determination of fracture toughness (KICe) of concrete, Eng. Fract. Mech., vol. 35, no. 4-5, pp. 637–645, 1990. DOI: 10.1016/0013-7944(90)90146-8.
  • S. Xu, and H. W. Reinhardt, A simplified method for determining double-K fracture parameters for three-point bending tests, Int. J. Fract., vol. 104, no. 2, pp. 181–209, 2000. DOI: 10.1023/A:1007676716549.
  • RILEM_TC89-FMT, Determination of fracture parameters (KIcs and CTODc) of plain concrete using three-point bend tests, Mater. Struct., vol. 23, no. 6, pp. 457–460, 1990. DOI: 10.1007/BF02472029.
  • H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed. New York, ASME Press, 2000.
  • M. Gümüş, and A. Arslan, Cracking behavior and flexural capacity prediction of singly reinforced RC beams with and without steel fiber, Theor. Appl. Fract. Mech., vol. 124, pp. 103790, 2023. DOI: 10.1016/j.tafmec.2023.103790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.