176
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study on nonlinear vibration of FG-GNPRC circular membrane with dielectric properties

, , , , , ORCID Icon & ORCID Icon show all
Pages 3756-3775 | Received 16 Dec 2022, Accepted 19 Feb 2023, Published online: 03 Mar 2023

References

  • Y. Lu, Q. Shao, M. Amabili, H. Yue, and H. Guo, Nonlinear vibration control effects of membrane structures with in-plane PVDF actuators: A parametric study, Int. J. Non-Linear Mech., vol. 122, pp. 103466, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103466.
  • C. Qi, D. Han, and T. Shinshi, A MEMS-based electromagnetic membrane actuator utilizing bonded magnets with large displacement, Sens. Actuat. A Phys., vol. 330, pp. 112834, 2021. DOI: 10.1016/j.sna.2021.112834.
  • B. Wang, J. Wang, Y. Lou, S. Ding, X. Jin, F. Liu, Z. Xu, J. Ma, Z. Sun, and X. Li, Halloysite nanotubes strengthened electrospinning composite nanofiber membrane for on-skin flexible pressure sensor with high sensitivity, good breathability, and round-the-clock antibacterial activity, Appl. Clay Sci., vol. 228, pp. 106650, 2022. DOI: 10.1016/j.clay.2022.106650.
  • B. Li, J. Zhang, L. Liu, H. Chen, S. Jia, and D. Li, Modeling of dielectric elastomer as electromechanical resonator, J. Appl. Phys., vol. 116, no. 12, pp. 124509, 2014. DOI: 10.1063/1.4896584.
  • J. Gade, R. Kemmler, M. Drass, and J. Schneider, Enhancement of a meso-scale material model for nonlinear elastic finite element computations of plain-woven fabric membrane structures, Eng. Struct., vol. 177, pp. 668–681, 2018. DOI: 10.1016/j.engstruct.2018.04.039.
  • Z. Wang, F. Yan, H. Pei, K. Yan, Z. Cui, B. He, K. Fang, and J. Li, Environmentally-friendly halloysite nanotubes@chitosan/polyvinyl alcohol/non-woven fabric hybrid membranes with a uniform hierarchical porous structure for air filtration, J. Membr. Sci., vol. 594, pp. 117445, 2020. DOI: 10.1016/j.memsci.2019.117445.
  • N. Sheng, M. Zhang, Q. Song, H. Zhang, S. Chen, H. Wang, and K. Zhang, Enhanced salinity gradient energy harvesting with oppositely charged bacterial cellulose-based composite membranes, Nano Energy, vol. 101, pp. 107548, 2022. DOI: 10.1016/j.nanoen.2022.107548.
  • G. Huang, Y. Dai, Y. Wu, C. Yang, and Y. Xia, Energy harvesting from the gust response of membrane wing using piezoelectrics, Aerosp. Sci. Technol., vol. 122, pp. 107433, 2022. DOI: 10.1016/j.ast.2022.107433.
  • A. Cugno, S. Palumbo, L. Deseri, M. Fraldi, and C. Majidi, Role of nonlinear elasticity in mechanical impedance tuning of annular dielectric elastomer membranes, Extreme Mech. Lett., vol. 13, pp. 116–125, 2017. DOI: 10.1016/j.eml.2017.03.001.
  • A. Kumar Srivastava and S. Basu, Modelling the performance of devices based on thin dielectric elastomer membranes, Mech. Mater., vol. 137, pp. 103136, 2019. DOI: 10.1016/j.mechmat.2019.103136.
  • T. Hiruta, N. Hosoya, S. Maeda, and I. Kajiwara, Experimental validation of vibration control in membrane structures using dielectric elastomer actuators in a vacuum environment, Int. J. Mech. Sci., vol. 191, pp. 106049, 2021. DOI: 10.1016/j.ijmecsci.2020.106049.
  • K.L. Routray, S. Saha, and D. Behera, Nanosized CoFe2O4-graphene nanoplatelets with massive dielectric enhancement for high frequency device application, Mater. Sci. Eng. B Adv., vol. 257, pp. 114548, 2020. DOI: 10.1016/j.mseb.2020.114548.
  • Ö.B. Mergen, E. Umut, E. Arda, and S. Kara, A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites, Polym. Test., vol. 90, pp. 106682, 2020. DOI: 10.1016/j.polymertesting.2020.106682.
  • J. Liu, M. Zhang, L. Guan, C. Wang, L. Shi, Y. Jin, C. Han, J. Wang, and Z. Han, Preparation of BT/GNP/PS/PVDF composites with controllable phase structure and dielectric properties, Polym. Test., vol. 100, pp. 107236, 2021. DOI: 10.1016/j.polymertesting.2021.107236.
  • K. Mehmood, A.U. Rehman, N. Amin, N.A. Morley, and M.I. Arshad, Graphene nanoplatelets/Ni-Co-Nd spinel ferrite composites with improving dielectric properties, J. Alloy. Compd., vol. 930, pp. 167335, 2023. DOI: 10.1016/j.jallcom.2022.167335.
  • X. Xia, Y. Wang, Z. Zhong, and G.J. Weng, A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites, Carbon., vol. 111, pp. 221–230, 2017. DOI: 10.1016/j.carbon.2016.09.078.
  • D. Wijerathne, Y. Gong, S. Afroj, N. Karim, and C. Abeykoon, Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites, Int. J. Lightweight Mater. Manuf., vol. 6, no. 1, pp. 117–128, 2023. DOI: 10.1016/j.ijlmm.2022.09.001.
  • R. Sun, L. Li, C. Feng, S. Kitipornchai, and J. Yang, Tensile behavior of polymer nanocomposite reinforced with graphene containing defects, Eur. Polym. J., vol. 98, pp. 475–482, 2018. DOI: 10.1016/j.eurpolymj.2017.11.050.
  • A. Mahmun and S. Kirtania, Evaluation of elastic properties of graphene nanoplatelet/epoxy nanocomposites, Mater, Today: Proc., vol. 44, pp. 1531–1535, 2021. DOI: 10.1016/j.matpr.2020.11.735.
  • C. Feng, S. Kitipornchai, and J. Yang, Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs), Eng. Struct., vol. 140, pp. 110–119, 2017. DOI: 10.1016/j.engstruct.2017.02.052.
  • C. Feng, S. Kitipornchai, and J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), Compos. Part B Eng., vol. 110, pp. 132–140, 2017. DOI: 10.1016/j.compositesb.2016.11.024.
  • C. Zhang and Q. Wang, Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori–Tanaka scheme, Mech. Adv. Mater. Struct., vol. 26, no. 21, pp. 1821–1831, 2019. DOI: 10.1080/15376494.2018.1452318.
  • M. Ganapathi, B. Anirudh, C. Anant, and O. Polit, Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect, Mech. Adv. Mater. Struct., vol. 28, no. 7, pp. 741–752, 2021. DOI: 10.1080/15376494.2019.1601310.
  • C.H. Thai, A. Ferreira, and P. Phung-Van, Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory, Compos. Part B Eng., vol. 169, pp. 174–188, 2019. DOI: 10.1016/j.compositesb.2019.02.048.
  • C.H. Thai, A. Ferreira, T. Tran, and P. Phung-Van, A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced composite microplates based on the modified couple stress theory, Compos. Struct., vol. 234, pp. 111695, 2020.
  • C.H. Thai and P. Phung-Van, A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC complicated plate structures, Eng. Anal. Bound. Elem., vol. 117, pp. 346–358, 2020. DOI: 10.1016/j.enganabound.2020.04.001.
  • P. Phung-Van, Q.X. Lieu, A. Ferreira, and C.H. Thai, A refined nonlocal isogeometric model for multilayer functionally graded graphene platelet-reinforced composite nanoplates, Thin-Walled Struct., vol. 164, pp. 107862, 2021.
  • F. Allahkarami, S. Satouri, and M.M. Najafizadeh, Mechanical buckling of two-dimensional functionally graded cylindrical shells surrounded by Winkler–Pasternak elastic foundation, Mech. Adv. Mater. Struct., vol. 23, no. 8, pp. 873–887, 2016. DOI: 10.1080/15376494.2015.1036181.
  • R. Gunes, M. Hakan, M.K. Apalak, and J.N. Reddy, Numerical investigation on normal and oblique ballistic impact behavior of functionally graded plates, Mech. Adv. Mater. Struct., vol. 28, no. 20, pp. 2114–2130, 2021. DOI: 10.1080/15376494.2020.1717023.
  • Y. Wang, C. Feng, J. Yang, D. Zhou, and S. Wang, Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method, Comput. Meth. Appl. Mech. Eng., vol. 379, pp. 113761, 2021. DOI: 10.1016/j.cma.2021.113761.
  • W.Q. Chen and Z.G. Bian, Wave propagation in submerged functionally graded piezoelectric cylindrical transducers with axial polarization, Mech. Adv. Mater. Struct., vol. 18, no. 1, pp. 85–93, 2011. DOI: 10.1080/15376494.2010.519240.
  • C. Anitescu, E. Atroshchenko, N. Alajlan, and T. Rabczuk, Artificial neural network methods for the solution of second order boundary value problems, Comput. Mater. Con., vol. 59, pp. 345–359, 2019.
  • E. Samaniego C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Meth. Appl. Mech. Eng., vol. 362, pp. 112790, 2020. DOI: 10.1016/j.cma.2019.112790.
  • X. Zhuang, H. Guo, N. Alajlan, H. Zhu, and T. Rabczuk, Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning, Eur. J. Mech. A-Solid, vol. 87, pp. 104225, 2021. DOI: 10.1016/j.euromechsol.2021.104225.
  • Y. Wang, C. Feng, Z. Zhao, F. Lu, and J. Yang, Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout, Compos. Struct., vol. 197, pp. 72–79, 2018. DOI: 10.1016/j.compstruct.2018.05.056.
  • G.J. Weng, A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates, Mech. Mater., vol. 42, no. 9, pp. 886–893, 2010. DOI: 10.1016/j.mechmat.2010.06.004.
  • Y. Su, J.J. Li, and G.J. Weng, Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance, Carbon., vol. 137, pp. 222–233, 2018. DOI: 10.1016/j.carbon.2018.05.033.
  • J. Wang, J.J. Li, G.J. Weng, and Y. Su, The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites, Acta Mater., vol. 185, pp. 461–473, 2020. DOI: 10.1016/j.actamat.2019.12.032.
  • R. Hashemi and G.J. Weng, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings, Carbon, vol. 96, pp. 474–490, 2016. DOI: 10.1016/j.carbon.2015.09.103.
  • Y. Wang, J.W. Shan, and G.J. Weng, Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling, J. Appl. Phys., vol. 118, no. 6, pp. 065101, 2015. DOI: 10.1063/1.4928293.
  • Y. Wang, G.J. Weng, S.A. Meguid, and A.M. Hamouda, A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites, J. Appl. Phys., vol. 115, no. 19, pp. 193706, 2014. DOI: 10.1063/1.4878195.
  • J.C. Dyre, A simple model of ac hopping conductivity in disordered solids, Phys. Lett., vol. 108, no. 9, pp. 457–461, 1985. DOI: 10.1016/0375-9601(85)90039-8.
  • B. Li, H. Chen, J. Qiang, S. Hu, Z. Zhu, and Y. Wang, Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation, J. Phys. D: Appl. Phys., vol. 44, no. 15, pp. 155301, 2011. DOI: 10.1088/0022-3727/44/15/155301.
  • P.B. Gonçalves, R.M. Soares, and D. Pamplona, Nonlinear vibrations of a radially stretched circular hyperelastic membrane, J. Sound Vib., vol. 327, no. 12, pp. 231–248, 2009. DOI: 10.1016/j.jsv.2009.06.023.
  • L.R.G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, New York, NY, 1958.
  • A.P.S. Selvadurai, Deflections of a rubber membrane, J. Mech. Phys. Solids., vol. 54, no. 6, pp. 1093–1119, 2006. DOI: 10.1016/j.jmps.2006.01.001.
  • A.N. Gent, Elastic instabilities in rubber, Int. J. Nonlin. Mech., vol. 40, no. 23, pp. 165–175, 2005. DOI: 10.1016/j.ijnonlinmec.2004.05.006.
  • D.C. Pamplona, P.B. Gonçalves, and S.R.X. Lopes, Finite deformations of cylindrical membrane under internal pressure, Int. J. Mech. Sci., vol. 48, no. 6, pp. 683–696, 2006. DOI: 10.1016/j.ijmecsci.2005.12.007.
  • Z. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sin., vol. 23, no. 6, pp. 549–578, 2010. DOI: 10.1016/S0894-9166(11)60004-9.
  • X. Wang, Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications, Butterworth-Heinemann, Oxford, UK, 2015.
  • F. He, S. Lau, H.L. Chan, and J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates, Adv. Mater., vol. 21, no. 6, pp. 710–715, 2009. DOI: 10.1002/adma.200801758.
  • K. Mrabet, E. Zaouali, and F. Najar, Internal resonance and nonlinear dynamics of a dielectric elastomer circular membrane, Int. J. Solids Struct., vol. 236237, pp. 111338, 2022. DOI: 10.1016/j.ijsolstr.2021.111338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.