198
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

An analysis of vibration and buckling behaviors of nano-composite beams reinforced with agglomerated carbon nanotubes via differential quadrature finite element method

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3798-3816 | Received 24 Jul 2022, Accepted 22 Feb 2023, Published online: 06 Mar 2023

References

  • C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett., vol. 81, no. 9, pp. 1869–1872, 1998. DOI: 10.1103/PhysRevLett.81.1869.
  • B. Ni, S. B. Sinnott, P. T. Mikulski, and J. A. Harrison, Compression of carbon nanotubes filled with C60, CH4 or Ne: predictions from molecular dynamics simulations, Phys. Rev. Lett., vol. 88, no. 20, pp. 205505, 2002. DOI: 10.1103/PhysRevLett.88.205505.
  • S. Iijima, Helical microtubules of graphitic carbon, Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.
  • B. Ashrafi and P. Hubert, Modeling the elastic properties of carbon nanotube array/polymer composites, Compos. Sci. Technol., vol. 66, no. 3–4, pp. 387–396, 2006. DOI: 10.1016/j.compscitech.2005.07.020.
  • Y. S. Xu, G. Ray, and B. Abdel-Magid, Thermal behavior of single walled carbon nanotube polymer–matrix composites, Compos. A Appl. Sci. Manufact., vol. 37, no. 1, pp. 114–121, 2006. DOI: 10.1016/j.compositesa.2005.04.009.
  • N. Hu, H. Fukunaga, C. Lu, M. Kameyama, and B. Yan, Prediction of elastic properties of carbon nanotube reinforced composite, Proc. R Soc. A., vol. 461, no. 2058, pp. 1685–1710, 2005. DOI: 10.1098/rspa.2004.1422.
  • R. Zhu, E. Pan, and A. K. Roy, Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites, Mater. Sci. Eng. A., vol. 447, no. 1–2, pp. 51–57, 2007. DOI: 10.1016/j.msea.2006.10.054.
  • H. S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Compos. Struct., vol. 91, no. 1, pp. 9–19, 2009. DOI: 10.1016/j.compstruct.2009.04.026.
  • H. S. Shen and Y. Xiang, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., vol. 56, pp. 698–708, 2013. DOI: 10.1016/j.engstruct.2013.06.002.
  • P. Zhu, Z. X. Lei, and K. M. Liew, Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory, Compos. Struct., vol. 94, no. 4, pp. 1450–1460, 2012. DOI: 10.1016/j.compstruct.2011.11.010.
  • M. H. Yas and N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Pres. Vess. Pip., vol. 98, pp. 119–128, 2012. DOI: 10.1016/j.ijpvp.2012.07.012.
  • L. L. Ke, J. Yang, and S. Kitipornchai, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mech. Adv. Mater. Struct., vol. 20, no. 1, pp. 28–37, 2013. DOI: 10.1080/15376494.2011.581412.
  • W. Nuttawit and U. Varidddhi, Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation, Comput. Mater. Sci., vol. 71, pp. 201–208, 2013. DOI: 10.1016/j.commatsci.2013.01.028.
  • F. Lin and Y. Xiang, Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories, Appl. Math. Model., vol. 38, no. 15–16, pp. 3741–3754, 2014. DOI: 10.1016/j.apm.2014.02.008.
  • S. H. Tagrara, A. Benachour, M. B. Bouiadjra, and A. Tounsi, On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams, Steel Compos. Struct., vol. 19, no. 5, pp. 1259–1277, 2015. DOI: 10.12989/scs.2015.19.5.1259.
  • H. S. Shen, X. Q. He, and D. Q. Yang, Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations, Int. J. Non-Lin. Mech., vol. 91, pp. 69–75, 2017. DOI: 10.1016/j.ijnonlinmec.2017.02.010.
  • M. Rezaiee-Pajand, A. R. Masoodi, and A. Alepaighambar, Lateral-torsional buckling of a bidirectional exponentially graded thin-walled C-shaped beam, Mech. Compos. Mater., vol. 58, no. 1, pp. 53–68, 2022. DOI: 10.1007/s11029-022-10011-8.
  • E. Sobhani and A. R. Masoodi, Differential quadrature technique for frequencies of the coupled circular arch–arch beam bridge system, Mech. Adv. Mater. Struct., vol. 30, pp. 770–781, 2021. DOI: 10.1080/15376494.2021.2023920.
  • M. Rezaiee-Pajand, A. R. Masoodi, and A. Alepaighambar, Critical buckling moment of functionally graded tapered mono-symmetric I-beam, Steel Compos. Struct., vol. 39, no. 5, pp. 599–614, 2015. DOI: 10.12989/scs.2021.39.5.599.
  • M. Rezaiee-Pajand, N. R. Safaei, and A. R. Masoodi, An efficient mixed interpolated curved beam element for geometrically nonlinear analysis, Appl. Math. Model., vol. 76, pp. 252–273, 2019. DOI: 10.1016/j.apm.2019.06.007.
  • M. Rezaiee-Pajand, A. R. Masoodi, and M. Bambaeechee, Tapered beam–column analysis by analytical solution, Proc. Inst. Civil Eng. Struct. Build, vol. 172, no. 11, pp. 789–804, 2019. DOI: 10.1680/jstbu.18.00062.
  • M. Rezaiee-Pajand, M. Mokhtari, and A. R. Masoodi, Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections, CEAS Aero. J., vol. 9, no. 4, pp. 629–648, 2018. DOI: 10.1007/s13272-018-0311-6.
  • M. Rezaiee-Pajand and A. R. Masoodi, Stability analysis of frame having FG tapered beam–column, Int. J. Steel Struct., vol. 19, no. 2, pp. 446–468, 2019. DOI: 10.1007/s13296-018-0133-8.
  • M. Rezaiee-Pajand, N. R. Safaei, and S. M. Hozhabrossadati, On the damping influence on the dynamic analysis of functionally graded beams resting on elastic foundation by Green’s function method, Mech. Based Des. Struct. Mach., vol. 51, pp. 1–18, 2021. DOI DOI: 10.1080/15397734.2021.1875330.
  • M. S. Rezaiee-Pajand and R. N. Niloofar Static and dynamic analysis of circular beams using explicit stiffness matrix, Struct. Eng. Mech., vol. 60, no. 1, pp. 111–130, 2016. DOI: 10.12989/SEM.2016.60.1.11.1.
  • I. Bensaid and A. Saimi, Dynamic investigation of functionally graded porous beams resting on viscoelastic foundation using generalised differential quadrature method, Austr. J. Mech. Eng., pp. 1–20, 2022. DOI DOI: 10.1080/14484846.2021.2017115.
  • I. Bensaid, A. Saimi, and Ö. Civalek, Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect, Mech. Adv. Mater. Struct., pp. 1–17, 2022. DOI: 10.1080/15376494.2022.2142342.
  • A. Montazeri, J. Javadpour, A. Khavandi, A. Mohajeri, and A. Tcharkhtch, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., vol. 31, no. 9, pp. 4202–4208, 2010. DOI: 10.1016/j.matdes.2010.04.018.
  • M. Heshmati and M. H. Yas, Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach, J. Mech. Sci. Technol., vol. 27, no. 11, pp. 3403–3408, 2013. DOI: 10.1007/s12206-013-0862-8.
  • B. S. Aragh, B. A. H. Nasrollah, and H. Hedayati, Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. B Eng., vol. 27, No.4 pp. 3403–3408, 2013. DOI: 10.1016/j.compositesb.2012.01.004.
  • S. Kamarian, M. Shakeri, M. H. Yas, M. Bodaghi, and A. Pourasghar, Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs, J. Sandw. Struct. Mater., vol. 17, no. 6, pp. 632–665, 2015. DOI: 10.1177/1099636215590280.
  • S. Kamarian, M. Salim, R. Dimitri, and F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, Int. J. Mech. Sci., vol. 108–109, pp. 157–165, 2016. DOI: 10.1016/j.ijmecsci.2016.02.006.
  • F. Tornabene, N. Fantuzzi, M. Bacciocchi, and E. Viola, Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Compos. B Eng., vol. 89, pp. 187–218, 2016. DOI: 10.1016/j.compositesb.2015.11.016.
  • F. Tornabene, N. Fantuzzi, and M. Bacciocchi, Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes, Compos. B Eng., vol. 115, pp. 449–476, 2017. DOI: 10.1016/j.compositesb.2016.07.011.
  • A. G. Arani and M. H. Zamani, Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation, Indian J. Phys., vol. 92, no. 6, pp. 767–777, 2018. DOI: 10.1007/s12648-018-1162-z.
  • H. Golabchi, R. Kolahchi, and M. R. Bidgoli, On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams, Comp. Concr., vol. 19, no. 5, pp. 1259–1277, 2018. DOI: 10.12989/cac.2018.21.4.431.
  • E. Sobhani and A. R. Masoodi, Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approache, Aero. Sci. Technol., vol. 119, pp. 107111, 2021. DOI: 10.1016/j.ast.2021.107111.
  • E. Sobhani, A. R. Masoodi, O. Civalek, and A. R. Ahmedi-Pari, Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells, Aero. Sci. Technol., vol. 120, pp. 107257, 2022. DOI: 10.1016/j.ast.2021.107257.
  • D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, J. Eng. Mater. Technol., vol. 126, no. 3, pp. 250–257, 2004. DOI: 10.1115/1.1751182.
  • M. Shokrieh and R. Rafiee, Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber, Mech. Res. Commun., vol. 37, no. 2, pp. 235–240, 2010. DOI: 10.1016/j.mechrescom.2009.12.002.
  • F. Ebrahimi, A. Seyfi, and R. Dabbagh, Wave dispersion characteristics of agglomerated multi-scale hybrid nanocomposite beams, J. Strain Anal., vol. 54, no. 4, pp. 276–289, 2019. DOI: 10.1177/0309324719862713.
  • C. Liu, B. Liu, L. Zhao, Y. Xing, C. H. Ma, and H. Li, A differential quadrature hierarchical finite element method and its applications to vibration and bending of Mindlin plates with curvilinear domains, Int. J. Numer. Meth. Eng., vol. 109, no. 2, pp. 174–197, 2017. DOI: 10.1002/nme.5277.
  • Y. F. Xing and B. Liu, High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain, Int. J. Numer. Meth. Eng., vol. 80, no. 13, pp. 1718–1742, 2009. DOI: 10.1002/nme.2685.
  • P. Barai and G. J. Weng, A theory of plasticity for carbon nanotube reinforced composites, Int. J. Plast., vol. 27, no. 4, pp. 539–559, 2011. DOI: 10.1016/j.ijplas.2010.08.006.
  • G. M. Odegarda, T.S. Gates, K.E. Wise, C. Park, and E.J. Siochi, Constitutive modeling of nanotube–reinforced polymer composites, Compos. Sci. Technol., vol. 63, no. 11, pp. 1671–1687, 2003. DOI: 10.1016/S0266-3538(03)00063-0.
  • L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B., vol. 69, pp. 045414, 2004. DOI: 10.1103/PhysRevB.81.119902.
  • H. T. Thai and T. P. Vo, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, Int. J. Mech. Sci., vol. 62, no. 1, pp. 57–66, 2012. DOI: 10.1016/j.ijmecsci.2012.05.014.
  • A. S. Sayyad and Y. M. Ghugal, An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation, Adv. Aircr. Spac. Sci., vol. 5, no. 6, pp. 671–689, 2018. DOI: 10.12989/aas.2018.5.6.671.
  • M. H. Yas and M. Heshmati, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Appl. Math. Model., vol. 36, no. 4, pp. 1371–1394, 2012. DOI: 10.1016/j.apm.2011.08.037.
  • T. P. Vo, H. T. Thai, T. K. Nguyen, A. Maheri, and J. Lee, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Eng. Struct., vol. 64, pp. 12–22, 2014. DOI: 10.1016/j.engstruct.2014.01.029.
  • H. S. Shen, Post buckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II: Pressure loaded shells, J. Compos. Struct., vol. 93, no. 10, pp. 2496–2503, 2011. DOI: 10.1016/j.compstruct.2011.04.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.