261
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Buckling and vibration of beams using Ritz method: Effects of axial grading of GPL and axially varying load

, ORCID Icon &
Pages 3861-3874 | Received 17 Jan 2023, Accepted 24 Feb 2023, Published online: 09 Mar 2023

References

  • E. Omanović-Mikličanin, A. Badnjević, A. Kazlagić, and M. Hajlovac, Nanocomposites: a brief review, Health Technol., vol. 10, no. 1, pp. 51–59, Jan. 2020. DOI: 10.1007/s12553-019-00380-x.
  • D. R. Paul, and L. M. Robeson, Polymer nanotechnology: nanocomposites, Polymer., vol. 49, no. 15, pp. 3187–3204, Jul. 2008. DOI: 10.1016/j.polymer.2008.04.017.
  • H. Kim, A. A. Abdala, and C. W. MacOsko, Graphene/polymer nanocomposites, Macromolecules., vol. 43, no. 16, pp. 6515–6530, Aug 24 2010. DOI: 10.1021/ma100572e.
  • M. A. Rafiee, W. Lu, A.V. Thomas, A. Zandiatashbar, J. Rafiee, J.M. Tour, and N.A. Koratkar, Graphene nanoribbon composites, ACS Nano., vol. 4, no. 12, pp. 7415–7420, Dec. 2010. DOI: 10.1021/nn102529n.
  • T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Recent advances in graphene based polymer composites, Progress Polym Sci., vol. 35, no. 11, pp. 1350–1375, 2010. DOI: 10.1016/j.progpolymsci.2010.07.005.
  • M. Heidarhaei, M. Shariati, and H. Eipakchi, Experimental and analytical investigations of the tensile behavior of graphene-reinforced polymer nanocomposites, Mech. Adv. Mater. Struct., vol. 27, no. 24, pp. 2090–2099. 2020. DOI: 10.1080/15376494.2018.1542546.
  • M. R. Barati, and A. M. Zenkour, Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection, Mech. Adv. Mater. Struct., vol. 26, no. 6, pp. 503–511, 2019. DOI: 10.1080/15376494.2017.1400622.
  • G. Manickam, P. Gupta, S. De, V. Rajamohan, and O. Polit, Nonlinear flexural free vibrations of size-dependent graphene platelets reinforced curved nano/micro beams by finite element approach coupled with trigonometric shear flexible theory, Mech, Adv. Mater. Struct., vol. 29, no. 17, pp. 2489–2515, 2022. DOI: 10.1080/15376494.2020.1866723.
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano., vol. 3, no. 12, pp. 3884–3890, Dec. 2009. DOI: 10.1021/nn9010472.
  • E. Arshid, and S. Amir, Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 235, no. 5, pp. 1077–1099, May 2021. DOI: 10.1177/1464420720985556.
  • I. M. Mudhaffar, A. Tounsi, A. Chikh, M.A. Al-Osta, M.M. Al-Zahrani, and S.U. Al-Dulaijan, Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation, Structures., vol. 33, pp. 2177–2189, Oct. 2021. DOI: 10.1016/j.istruc.2021.05.090.
  • M. O. Belarbi, A. Garg, M.-S.-A. Houari, H. Hirane, A. Tounsi, and H.D. Chalak, A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams, Eng. Comput., vol. 38, pp. 4273–4300. 2021. DOI: 10.1007/s00366-021-01452-1.
  • M. Babaei, F. Kiarasi, M.S. Tehrani, A. Hamzei, E. Mohtarami, and K. Asemi, Three dimensional free vibration analysis of functionally graded graphene reinforced composite laminated cylindrical panel, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 236, pp. 1501–1514. 2022. DOI: 10.1177/14644207211073445.
  • Ş. D. Akbaş, Forced vibration responses of axially functionally graded beams by using Ritz method, J. Appl. Comput. Mech., vol. 7, no. 1, pp. 109–115, Dec. 2021. DOI: 10.22055/jacm.2020.34865.2491.
  • Y. Chen, S. Dong, Z. Zang, M. Gao, J. Zhang, C. Ao, H. Liu, and Q. Zhang, Free transverse vibrational analysis of axially functionally graded tapered beams via the variational iteration approach, JVC/J. Vib. Control., vol. 27, no. 11–12, pp. 1265–1280, Jun. 2021. DOI: 10.1177/1077546320940181.
  • A. Ebrahimi-Mamaghani, R. Sotudeh-Gharebagh, R. Zarghami, and N. Mostoufi, Thermo-mechanical stability of axially graded Rayleigh pipes, Mech. Based Des. Struct. Mach., vol. 50, no. 2, pp. 412–441, 2022. DOI: 10.1080/15397734.2020.1717967.
  • J. Du, S.H. Mirtalebi, M.T. Ahmadian, Y. Cao, M. Suhatril, and H. Assilzadeh, Dynamic control of supported macro/micro-tubes conveying magnetic fluid utilizing intelligibly designed axially functionally graded materials, Int. J. Comput. Integr. Manuf., Vol., vol. 35, no. 4–5, pp. 345–358, 2022. DOI: 10.1080/0951192X.2021.1879399.
  • N. Shafiei, M. Hamisi, and M. Ghadiri, Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment, J. Solid Mech., vol. 12, no. 1, pp. 16–32, 2020. DOI: 10.22034/jsm.2019.563759.1273.
  • Ş. D. Akbaş, Geometrically nonlinear analysis of axially functionally graded beams by using finite element method, J. Comput. Appl. Mech., vol. 51, no. 2, pp. 411–416, Dec. 2020. DOI: 10.22059/JCAMECH.2020.309019.548.
  • Y. Wang, H. Ren, T. Fu, and C. Shi, Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory, Acta Astronaut., vol. 166, pp. 306–316, Jan. 2020. DOI: 10.1016/j.actaastro.2019.10.036.
  • H. B. Khaniki, and M. H. Ghayesh, On the dynamics of axially functionally graded CNT strengthened deformable beams, Eur. Phys. J. Plus., vol. 135, no. 5, Jun. 2020. Article ID: 415, DOI: 10.1140/epjp/s13360-020-00433-5.
  • K. Yee, U.M. Kankanamalage, M.H. Ghayesh, Y. Jiao, S. Hussain, and M. Amabili, Coupled dynamics of axially functionally graded graphene nanoplatelets-reinforced viscoelastic shear deformable beams with material and geometric imperfections, Eng. Anal. Bound. Elem., vol. 136, pp. 4–36, Mar. 2022. DOI: 10.1016/j.enganabound.2021.12.017.
  • D. Liu, D. Chen, J. Yang, and S. Kitipornchai, Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams, Eng. Struct., vol. 249, pp. 113327, Dec. 2021. DOI: 10.1016/j.engstruct.2021.113327.
  • A. K. Gantayat, M. K. Sutar, and J. R. Mohanty, Dynamic characteristic of graphene reinforced axial functionally graded beam using finite element analysis, Mater, Today Proc., vol. 62, no. P10, pp. 5923–5927, Jan. 2022. DOI: 10.1016/j.matpr.2022.04.636.
  • Y. Wang, K. Xie, C. Shi, and T. Fu, Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments, Mater. Res. Express., vol. 6, no. 8, p.085615, May 2019. DOI: 10.1088/2053-1591/ab1eef.
  • X. Zhu, Z. Lu, Z. Wang, L. Xue, and A. Ebrahimi-Mamaghani, Vibration of spinning functionally graded nanotubes conveying fluid, Eng. Comput., vol. 38, no. 2, pp. 1771–1792, Apr. 2022. DOI: 10.1007/s00366-020-01123-7.
  • M. Şimşek, Size dependent nonlinear free vibration of an axially functionally graded (AFG) microbeam using He’s variational method, Compos. Struct., vol. 131, pp. 207–214, Nov. 2015. DOI: 10.1016/j.compstruct.2015.05.004.
  • C. Li, S. Zheng, and D. Chen, Size-dependent isogeometric analysis of bi-directional functionally graded microbeams reinforced by graphene nanoplatelets, Mech. Based Des. Struct. Mach., vol. 51, pp. 601–619. 2020. DOI: 10.1080/15397734.2020.1848591.
  • M. Şimşek, Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions, Compos. Struct., vol. 149, pp. 304–314, Aug. 2016. DOI: 10.1016/j.compstruct.2016.04.034.
  • R. A. Shanab, and M. A. Attia, Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect, Eng. Comput., vol. 38, no. 3, pp. 2269–2312, 2022. Jun DOI: 10.1007/s00366-020-01205-6.
  • S. Chen, Q. Zhang, and H. Liu, Dynamic response of double-FG porous beam system subjected to moving load, Eng. Comput., vol. 38, no. S3, pp. 2309–2328, Aug. 2022. DOI: 10.1007/s00366-021-01376-w.
  • A. Karamanli, and T. P. Vo, Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter, Appl. Math. Model., vol. 91, pp. 723–748, Mar. 2021. DOI: 10.1016/j.apm.2020.09.058.
  • H. Hu, A. Badir, and A. Abatan, Buckling behavior of a graphite/epoxy composite plate under parabolic variation of axial loads, Int. J. Mech. Sci., vol. 45, no. 6-7, pp. 1135–1147, Jun. 2003. DOI: 10.1016/j.ijmecsci.2003.08.003.
  • A. Karamanli, and M. Aydogdu, Buckling of laminated composite and sandwich beams due to axially varying in-plane loads, Compos. Struct., vol. 210, pp. 391–408, Feb. 2019. DOI: 10.1016/j.compstruct.2018.11.067.
  • A. Melaibari, A. B. Khoshaim, S. A. Mohamed, and M. A. Eltaher, Static stability and of symmetric and sigmoid functionally graded beam under variable axial load, Steel Compos. Struct., vol. 35, no. 5, pp. 671–685, 2020. DOI: 10.12989/scs.2020.35.5.671.
  • A. Melaibari, R. M. Abo-Bakr, S. A. Mohamed, and M. A. Eltaher, Static stability of higher order functionally graded beam under variable axial load, Alexandria Eng. J., vol. 59, no. 3, pp. 1661–1675, Jun. 2020. DOI: 10.1016/j.aej.2020.04.012.
  • M. A. Hamed, S. A. Mohamed, and M. A. Eltaher, Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads, Steel Compos. Struct. An Int. J., vol. 34, pp. 75–89, 2020. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10697189.
  • M. A. Eltaher, S. A. Mohamed, and A. Melaibari, Static stability of a unified composite beams under varying axial loads, Thin-Walled Struct., vol. 147, pp. 106488, 2020. Feb DOI: 10.1016/j.tws.2019.106488.
  • M. A. Hamed, R. M. Abo-Bakr, S. A. Mohamed, and M. A. Eltaher, Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core, Eng. Comput., vol. 36, no. 4, pp. 1929–1946, Oct. 2020. DOI: 10.1007/s00366-020-01023-w.
  • M. A. Eltaher, and S. A. Mohamed, Buckling and stability analysis of sandwich beams subjected to varying axial loads, Steel Compos. Struct. An Int. J., vol. 34, no. 2, pp. 241–260, 2020.
  • R. M. Abo-Bakr, H. M. Abo-Bakr, S. A. Mohamed, and M. A. Eltaher, Optimal weight for buckling of FG beam under variable axial load using Pareto optimality, Compos. Struct., vol. 258, pp. 113193, Feb. 2021. DOI: 10.1016/j.compstruct.2020.113193.
  • M. A. Alazwari, S. A. Mohamed, and M. A. Eltaher, Vibration analysis of laminated composite higher order beams under varying axial loads, Ocean Eng., vol. 252, pp. 111203, May 2022. DOI: 10.1016/j.oceaneng.2022.111203.
  • B. P. Harsha, P. Jeyaraj, and B. M. C. Lenin, Effect of porosity and profile axial loading on elastic buckling and free vibration of functionally graded porous beam, IOP Conf. Ser.: Mater. Sci. Eng., vol. 1128, no. 1, pp. 012025, Apr. 2021. DOI: 10.1088/1757-899X/1128/1/012025.
  • R. Priyanka, C. M. Twinkle, and J. Pitchaimani, Stability and dynamic behavior of porous FGM beam: influence of graded porosity, graphene platelets, and axially varying loads, Eng. Comput., 2021. DOI: 10.1007/s00366-021-01478-5.
  • R. Priyanka, and J. Pitchaimani, Static stability and free vibration characteristics of a micro laminated beam under varying axial load using modified couple stress theory and Ritz method, Compos. Struct., vol. 281, pp. 115028, 2022. Feb DOI: 10.1016/j.compstruct.2021.115028.
  • S. N. Balireddy, J. Pitchaimani, L. B. Mailan Chinnapandi, and V. S. N. R. Chintapalli, Acoustic response of an isotropic beam under axially variable loads using Ritz and Rayleigh integral methods, Arch. Acoust., vol. 47, no. 1, pp. 97–112, 2022. DOI: 10.24425/aoa.2022.140736.
  • N. D. Nguyen, T. K. Nguyen, T. N. Nguyen, and H. T. Thai, New Ritz-solution shape functions for analysis of thermo-mechanical buckling and vibration of laminated composite beams, Compos. Struct., vol. 184, pp. 452–460, Jan. 2018. DOI: 10.1016/j.compstruct.2017.10.003.
  • M. Aydogdu, Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method, Compos. Sci. Technol., vol. 66, no. 10, pp. 1248–1255, Aug. 2006. DOI: 10.1016/j.compscitech.2005.10.029.
  • T. K. Nguyen, N. D. Nguyen, T. P. Vo, and H. T. Thai, Trigonometric-series solution for analysis of laminated composite beams, Compos. Struct., vol. 160, pp. 142–151, Jan. 2017. DOI: 10.1016/j.compstruct.2016.10.033.
  • M. Song, S. Kitipornchai, and J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets, Compos. Struct., vol. 159, pp. 579–588, 2017. DOI: 10.1016/j.compstruct.2016.09.070.
  • M. Song, J. Yang, S. Kitipornchai, and W. Zhu, Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates, Int. J. Mech. Sci., vol. 131–132, no. July, pp. 345–355, 2017. DOI: 10.1016/j.ijmecsci.2017.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.