287
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Scattering of Love wave from an interface crack in a viscoelastic waveguide layer bonded to a piezoelectric substrate: an analytical estimate and numerical validation

, &
Pages 3875-3888 | Received 23 Dec 2022, Accepted 27 Feb 2023, Published online: 15 Mar 2023

References

  • Z. Qian, F. Jin, Z. Wang, and K. Kishimoto, Love waves propagation in a piezoelectric layered structure with initial stresses, Acta Mech., vol. 171, no. 1–2, pp. 41–57, 2004. DOI: 10.1007/s00707-004-0128-8.
  • Z. Ramshani, A. S. G. Reddy, B. B. Narakathu, J. T. Wabeke, S. O. Obare, and M. Z. Atashbar, SH-SAW sensor based microfluidic system for the detection of heavy metal compounds in liquid environments, Sens. Actuators, B Chem., vol. 217, pp. 72–77, 2015. DOI: 10.1016/j.snb.2014.12.026.
  • I. Constantinoiu, and C. Viespe, Development of Pd/TiO2 porous layers by pulsed laser deposition for surface acoustic wave H2 gas sensor, Nanomaterials., vol. 10, no. 4, pp. 760, 2020. DOI: 10.3390/nano10040760.
  • I. Sayago, D. Matatagui, M.J. Fernández, J.L. Fontecha, I. Jurewicz, R. Garriga, and E. Muñoz, Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants, Talanta, vol. 148, pp. 393–400, 2016. DOI: 10.1016/j.talanta.2015.10.069.
  • W. Wang, and S. He, Theoretical analysis on response mechanism of polymer-coated chemical sensor based Love wave in viscoelastic media, Sens. Actuators, B Chem., vol. 138, no. 2, pp. 432–440, 2009. DOI: 10.1016/j.snb.2009.03.006.
  • K. Chang, Y. Pi, W. Lu, F. Wang, F. Pan, F. Li, S. Jia, J. Shi, S. Deng, and M. Chen, Label-free and high-sensitive detection of human breast cancer cells by aptamer-based leaky surface acoustic wave biosensor array, Biosens. Bioelectron., vol. 60, pp. 318–324, 2014. DOI: 10.1016/j.bios.2014.04.027.
  • X. C. Lo, J. Y. Li, M. T. Lee, and D. J. Yao, Frequency shift of a SH-SAW biosensor with glutaraldehyde and 3-aminopropyltriethoxysilane functionalized films for detection of epidermal growth factor, Biosensors, vol. 10, no. 8, pp. 92, 2020. DOI: 10.3390/bios10080092.
  • X. C. Lo, M. T. Lee, and D. J. Yao, Detection of Transferrin Receptor CD71 on a Shear Horizontal Surface Acoustic Wave Biosensor, IEEE Open J. Nanotechnol., vol. 2, pp. 1–7, 2021. DOI: 10.1109/OJNANO.2020.3044352.
  • J. T. Luo, A.-J. Quan, G.-X. Liang, Z.-H. Zheng, S. Ramadan, C. Fu, H.-L. Li, and Y.-Q. Fu, Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO(112¯0)/Si(1 0 0) with high sensitivity and temperature stability, Ultrasonics, vol. 75, pp. 63–70, 2017. DOI: 10.1016/j.ultras.2016.11.017.
  • Q. Wang, S. T. Quek, and V. K. Varadan, Love waves in piezoelectric coupled solid media, Smart Mater. Struct., vol. 10, no. 2, pp. 380–388, 2001. DOI: 10.1088/0964-1726/10/2/325.
  • P. Kielczynski, and J. D. N. Cheeke, Love waves propagation in viscoelastic media, Proc. IEEE Ultrason. Symp., vol. 1, pp. 437–440, 1997.
  • J. Liu, and S. He, Properties of Love waves in layered piezoelectric structures, Int. J. Solids Struct., vol. 47, no. 2, pp. 169–174, 2010. DOI: 10.1016/j.ijsolstr.2009.06.018.
  • J. Liu, L. Wang, Y. Lu, and S. He, Erratum: Properties of Love waves in a piezoelectric layered structure with a viscoelastic guiding layer (Smart Materials and Structures (2013) 22 (125034)), Smart Mater. Struct., vol. 23, no. 5, pp. 059501, 2014. DOI: 10.1088/0964-1726/23/5/059501.
  • V. Sharma, and S. Kumar, Analysis of size dependency on Love-type wave propagation in a functionally graded piezoelectric smart material, Math. Mech. Solids., vol. 25, no. 8, pp. 1517–1533, 2020. DOI: 10.1177/1081286520909522.
  • P. Kiełczyński, M. Szalewski, and A. Balcerzak, Effect of a viscous liquid loading on Love wave propagation, Int. J. Solids Struct., vol. 49, no. 17, pp. 2314–2319, 2012. DOI: 10.1016/j.ijsolstr.2012.04.030.
  • P. Kiełczyński, Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Appl. Math. Model., vol. 53, pp. 419–432, 2018. DOI: 10.1016/j.apm.2017.09.013.
  • K. Chen, Z. Wu, Y. Jin, J. Hu, J. Du, and M. Zhang, Love wave propagation in piezoelectric structures bonded with conductive polymer films, Ultrasonics, vol. 118, pp. 106559–102021, June 2021. DOI: 10.1016/j.ultras.2021.106559.
  • H. J. Yang, and D. B. Bogy, Elastic wave scattering from an interface crack in a layered half space, J. Appl. Mech. Trans. ASME, vol. 52, no. 1, pp. 42–50, 1985. DOI: 10.1115/1.3169024.
  • L. M. Keer, W. Lin, and J. D. Achenbach, Resonance effects for a crack near a free surface, J. Appl. Mech. Trans. ASME, vol. 51, no. 1, pp. 65–70, 1984. DOI: 10.1115/1.3167598.
  • P. J. Wei, and Z. M. Zhang, Scattering of inhomogeneous wave by viscoelastic interface crack, Acta Mech., vol. 158, no. 3–4, pp. 215–225, 2002. DOI: 10.1007/BF01176910.
  • R. Bagheri, and A. R. Hassani, Crack analysis of circular bars reinforced by a piezoelectric layer under torsional transient loading, Arch. Appl. Mech., vol. 89, no. 8, pp. 1555–1578, 2019. DOI: 10.1007/s00419-019-01527-y.
  • J. Bayat, M. Ayatollahi, and R. Bagheri, Fracture analysis of an orthotropic strip with imperfect piezoelectric coating containing multiple defects, Theor. Appl. Fract. Mech., vol. 77, pp. 41–49, 2015. DOI: 10.1016/j.tafmec.2015.01.009.
  • A. H. Fartash, M. Ayatollahi, and R. Bagheri, Transient response of dissimilar piezoelectric layers with multiple interacting interface cracks, Appl. Math. Model., vol. 66, pp. 508–526, 2019. DOI: 10.1016/j.apm.2018.09.030.
  • R. Bagheri, and M. Noroozi, The linear steady state analysis of multiple moving cracks in a piezoelectric half-plane under in-plane electro-elastic loading, Theor. Appl. Fract. Mech., vol. 96, pp. 334–350, 2018. DOI: 10.1016/j.tafmec.2018.05.010.
  • M. M. Monfared, M. Pourseifi, and R. Bagheri, Computation of mixed mode stress intensity factors for multiple axisymmetric cracks in an FGM medium under transient loading, Int. J. Solids Struct., vol. 158, pp. 220–231, 2019. DOI: 10.1016/j.ijsolstr.2018.09.010.
  • G. Bin, Y. Shouwen, and F. Xiqiao, Scattering of Love waves by an interface crack between a piezoelectric layer and an elastic substrate, Acta Mech. Solida Sin., vol. 15, pp. 111–118, 2002.
  • M. S. Chaki, and A. K. Singh, Scattering and propagation characteristics of SH wave in reduced Cosserat isotropic layered structure at irregular boundaries, Math. Methods Appl. Sci., vol. 44, no. 7, pp. 6143–6163, 2021. DOI: 10.1002/mma.7176.
  • A. K. Singh, and A. K. Singh, Analysis on the propagation of crack in a functionally graded orthotropic strip under pre-stress, Waves Random Complex Medium., pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2048128.
  • J. Yang, S. Liu, B. Yang, and Y. Liu, Scattering of SH waves in a bi-material half space with a circular hole and periodic type III interfacial cracks, Mech. Adv. Mater. Struct., pp. 1–9, 2022.
  • B. L. Sharma, Surface wave across crack-tip in a lattice model, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 380, no. 2231, pp. 1–14. 2022.
  • J.-G. Zhao, X.-X. Huang, W.-F. Liu, W.-J. Zhao, J.-Y. Song, B. Xiong, and S.-X. Wang, 2.5-D frequency-domain viscoelastic wave modelling using finite-element method, Geophys. J. Int., vol. 211, no. 1, pp. 164–187, 2017. DOI: 10.1093/gji/ggx273.
  • D. Fang, and J. Liu, Fracture Mechanics of Piezoelectric and Ferroelectric Solids, Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg, 2013.
  • Y. C. Angel, On the reduction of elastodynamic crack problems to singular integral equations, Int. J. Eng. Sci., vol. 26, no. 7, pp. 757–764, 1988. DOI: 10.1016/0020-7225(88)90093-6.
  • S. M. Hosseini, R. Bagheri, and M. M. Monfared, Transient response of several cracks in a nonhomogeneous half-layer bonded to a magneto-electro-elastic coating, Theor. Appl. Fract. Mech., vol. 110, pp. 102821, 2020. DOI: 10.1016/j.tafmec.2020.102821.
  • H. Afshar, and R. Bagheri, Several embedded cracks in a functionally graded piezoelectric strip under dynamic loading, Comput. Math. Appl., vol. 76, no. 3, pp. 534–550, 2018. DOI: 10.1016/j.camwa.2018.04.035.
  • M. Ayatollahi, R. Bagheri, M. Nourazar, M. M. Monfared, and S. M. Mousavi, Analytic solutions of multiple moving cracks in an orthotropic layer bonded to an orthotropic FGM coating, Appl. Math. Comput., vol. 293, pp. 394–403, 2017.
  • R. Bagheri, and M. Ayatollahi, Multiple moving cracks in a functionally graded strip, Appl. Math. Model., vol. 36, no. 10, pp. 4677–4686, 2012. DOI: 10.1016/j.apm.2011.11.085.
  • R. Bagheri, M. Ayatollahi, A. M. Mirzaei, and M. M. Monfared, Multiple defects in a piezoelectric half-plane under electro-elastic in-plane loadings, Theor. Appl. Fract. Mech., vol. 103, pp. 102316, 2019. DOI: 10.1016/j.tafmec.2019.102316.
  • R. Bagheri, and M. M. Monfared, In-plane transient analysis of two dissimilar nonhomogeneous half-planes containing several interface cracks, Acta Mech., vol. 231, no. 9, pp. 3779–3797, 2020. DOI: 10.1007/s00707-020-02722-7.
  • F. Erdogan, and G. D. Gupta, Numerical solution of singular integral equations. In: G. C. Sih (ed.) Mechanics of Fracture, vol. 1, Springer, Dordrecht, pp. 368–420, 1972.
  • Y. Liu, A. Talbi, P. Pernod, and O. Bou Matar, Highly confined Love waves modes by defect states in a holey SiO2/quartz phononic crystal, J. Appl. Phys., vol. 124, no. 14, pp. 1–7. 2018.
  • P. S. Yang, S. W. Liu, and J. C. Sung, Transient response of SH waves in a layered half-space with sub-surface and interface cracks, Appl. Math. Model., vol. 32, no. 4, pp. 595–609, 2008. DOI: 10.1016/j.apm.2007.01.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.