176
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Size dependent free vibration analysis of 2D-functionally graded curved nanobeam by meshless method

, &
Pages 4352-4373 | Received 20 Jan 2023, Accepted 21 Mar 2023, Published online: 07 Apr 2023

References

  • S. Mukherjee and N.R. Aluru, Applications in micro- and nano-electromechanical systems, Eng. Anal. Bound. Elem., vol. 30, no. 11, p. 909, 2006. DOI: 10.1016/j.enganabound.2006.07.001.
  • A. Peschot, C. Qian, and T.J.K. Liu, Nanoelectromechanical switches for low-power digital computing, Micromachines, vol. 6, no. 8, pp. 1046–1065, 2015. DOI: 10.3390/mi6081046.
  • A.K. Singh, A. Das, and P. Kumar, Nanobiosensors and their applications. In: Nanotechnology, Jenny Stanford Publishing, New York, pp. 249–288, 2021.
  • S. Saravanan, E.K. Nangai, S.V. Ajantha, and S. Sankar, Recent developments in nanomaterial applications. In: Nanomaterials and Nanocomposites, CRC Press, Boca Raton, pp. 3–15, 2021.
  • M.A. Roudbari, T.D. Jorshari, C. Lü, R. Ansari, A.Z. Kouzani, and M. Amabili, A review of size-dependent continuum mechanics models for micro-and nano-structures, Thin-Walled Struct., vol. 170, p. 108562, 2022. DOI: 10.1016/j.tws.2021.108562.
  • R.D. Mindlin and N.N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., vol. 4, no. 1, pp. 109–124, 1968. DOI: 10.1016/0020-7683(68)90036-X.
  • L. Lu, X. Guo, and J. Zhao, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, Int. J. Eng. Sci., vol. 116, pp. 12–24, 2017. DOI: 10.1016/j.ijengsci.2017.03.006.
  • R.A. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., vol. 17, no. 2, pp. 85–112, 1964. DOI: 10.1007/BF00253050.
  • S.K. Park and X.L. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., vol. 16, no. 11, pp. 2355–2359, 2006. DOI: 10.1088/0960-1317/16/11/015.
  • A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., vol. 10, no. 1, pp. 1–16, 1972. DOI: 10.1016/0020-7225(72)90070-5.
  • A.C. Eringen and J.L. Wegner, Nonlocal continuum field theories, Appl. Mech. Rev., vol. 56, no. 2, pp. B20–B22, 2003. DOI: 10.1115/1.1553434.
  • M.A. Eltaher, S.A. Emam, and F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., vol. 218, no. 14, pp. 7406–7420, 2012. DOI: 10.1016/j.amc.2011.12.090.
  • M. Şimşek, Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Compos. B: Eng., vol. 56, pp. 621–628, 2014. DOI: 10.1016/j.compositesb.2013.08.082.
  • F. Bakhtiari-Nejad and M. Nazemizadeh, Size-dependent dynamic modeling and vibration analysis of mems/nems-based nanomechanical beam based on the nonlocal elasticity theory, Acta Mech., vol. 227, no. 5, pp. 1363–1379, 2016. DOI: 10.1007/s00707-015-1556-3.
  • B. Karami and M. Janghorban, A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams, Thin-Walled Struct., vol. 143, p. 106227, 2019. DOI: 10.1016/j.tws.2019.106227.
  • A. Babaei, A. Rahmani, and I. Ahmadi, Transverse vibration analysis of nonlocal beams with various slenderness ratios, undergoing thermal stress, Arch. Mech. Eng., vol. 66, pp. 5–24, 2019.
  • B. Uzun, M.Ö. Yaylı, and B. Deliktaş, Free vibration of FG nanobeam using a finite-element method, Micro Nano Lett., vol. 15, no. 1, pp. 35–40, 2020. DOI: 10.1049/mnl.2019.0273.
  • E.R. Estabragh and G.H. Baradaran, Large amplitude free vibration analysis of nanobeams based on modified couple stress theory, Int. J. Struct. Stab. Dyn., vol. 21, no. 9, p. 2150129, 2021. DOI: 10.1142/S0219455421501297.
  • J. Sladek, V. Sladek, M. Xu, and Q. Deng, A cantilever beam analysis with flexomagnetic effect, Meccanica, vol. 56, no. 9, pp. 2281–2292, 2021. DOI: 10.1007/s11012-021-01357-9.
  • I. Esen, A.A. Abdelrhmaan, and M.A. Eltaher, Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields, Eng. Comput., vol. 38, pp. 3463–3482, 2021. DOI: 10.1007/s00366-021-01389-5.
  • R. Lal and C. Dangi, Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen’s nonlocal theory incorporating the surface effect, Appl. Math. Comput., vol. 395, p. 125857, 2021. DOI: 10.1016/j.amc.2020.125857.
  • M. Najafi and I. Ahmadi, A nonlocal layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler–Pasternak foundation, Steel Compos. Struct., vol. 40, no. 1, pp. 101–119, 2021.
  • M. Najafi and I. Ahmadi, Nonlocal layerwise theory for bending, buckling and vibration analysis of functionally graded nanobeams, Eng. Comput., 2022. DOI: 10.1007/s00366-022-01605-w.
  • M. Soltani, F. Atoufi, F. Mohri, R. Dimitri, and F. Tornabene, Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials, Thin-Walled Struct., vol. 159, p. 107268, 2021. DOI: 10.1016/j.tws.2020.107268.
  • Y.P. Liu and J.N. Reddy, A nonlocal curved beam model based on a modified couple stress theory, Int. J. Struct. Stab. Dyn., vol. 11, no. 3, pp. 495–512, 2011. DOI: 10.1142/S0219455411004233.
  • H. Kananipour, M. Ahmadi, and H. Chavoshi, Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams, Lat. Am. J. Solids Struct., vol. 11, no. 5, pp. 848–853, 2014. DOI: 10.1590/S1679-78252014000500007.
  • S.A.H. Hosseini and O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model, Appl. Phys. A, vol. 122, no. 3, p. 169, 2016. DOI: 10.1007/s00339-016-9696-4.
  • E. Tufekci, S.A. Aya, and O. Oldac, In-plane static analysis of nonlocal curved beams with varying curvature and cross-section, Int. J. Appl. Mech., vol. 8, no. 1, p. 1650010, 2016. DOI: 10.1142/S1758825116500101.
  • M. Ganapathi and O. Polit, Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory, Physica E, vol. 91, pp. 190–202, 2017. DOI: 10.1016/j.physe.2017.04.012.
  • S.A. Aya and E. Tufekci, Modeling and analysis of out-of-plane behavior of curved nanobeams based on nonlocal elasticity, Compos. B: Eng., vol. 119, pp. 184–195, 2017. DOI: 10.1016/j.compositesb.2017.03.050.
  • M. Rezaiee-Pajand and N. Rajabzadeh-Safaei, Nonlocal static analysis of a functionally graded material curved nanobeam, Mech. Adv. Mater. Struct., vol. 25, no. 7, pp. 539–547, 2018. DOI: 10.1080/15376494.2017.1285463.
  • F. Ebrahimi, M. Daman, and A. Jafari, Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment, Smart Struct. Syst., vol. 20, pp. 709–728, 2017.
  • M. Ganapathi, T. Merzouki, and O. Polit, Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach, Compos. Struct., vol. 184, pp. 821–838, 2018. DOI: 10.1016/j.compstruct.2017.10.066.
  • F. Ebrahimi and M.R. Barati, Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory, Mech. Adv. Mater. Struct., vol. 25, no. 4, pp. 350–359, 2018. DOI: 10.1080/15376494.2016.1255830.
  • M. Arefi, M. Pourjamshidian, and A.G. Arani, Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories, Eur. Phys. J. Plus, vol. 133, no. 5, p. 193, 2018. DOI: 10.1140/epjp/i2018-12015-1.
  • O. Polit, T. Merzouki, and M. Ganapathi, Elastic stability of curved nanobeam based on higher-order shear deformation theory and nonlocal analysis by finite element approach, Finite Elem. Anal. Des., vol. 146, pp. 1–15, 2018. DOI: 10.1016/j.finel.2018.04.002.
  • M. Arefi and A.M. Zenkour, Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory, Alex. Eng. J., vol. 57, no. 3, pp. 2177–2185, 2018. DOI: 10.1016/j.aej.2017.07.003.
  • M. Ganapathi and O. Polit, A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams, Appl. Math. Model., vol. 57, pp. 121–141, 2018. DOI: 10.1016/j.apm.2017.12.025.
  • M.N. Allam and A.F. Radwan, Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium, Adv. Mech. Eng., vol. 11, no. 4, p. 168781401983706, 2019. DOI: 10.1177/1687814019837067.
  • F. Ebrahimi, M.R. Barati, and V. Mahesh, Dynamic modeling of smart magneto-electro-elastic curved nanobeams, Adv. Nano Res., vol. 7, no. 3, p. 145, 2019.
  • T. Merzouki, M. Ganapathi, and O. Polit, A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams, Mech. Adv. Mater. Struct., vol. 26, no. 7, pp. 614–630, 2019. DOI: 10.1080/15376494.2017.1410903.
  • R. Barretta, F.M. de Sciarra, and M.S. Vaccaro, On nonlocal mechanics of curved elastic beams, Int. J. Eng. Sci., vol. 144, p. 103140, 2019. DOI: 10.1016/j.ijengsci.2019.103140.
  • P. Zhang, H. Qing, and C.‐F. Gao, Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two‐phase local/nonlocal integral model, ZAMM‐J. Appl. Math. Mech./Z. Angew. Math. Mech., vol. 100, no. 7, p. e201900207, 2020.
  • P. Zhang and H. Qing, Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model, Mech. Adv. Mater. Struct., vol. 29, no. 9, pp. 1211–1228, 2022. DOI: 10.1080/15376494.2020.1811926.
  • P. Zhang and H. Qing, Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model, Acta Mech., vol. 231, no. 12, pp. 5251–5276, 2020. DOI: 10.1007/s00707-020-02815-3.
  • G.L. She, H.B. Liu, and B. Karami, On resonance behavior of porous FG curved nanobeams, Steel Compos. Struct., vol. 36, no. 2, pp. 179–186, 2020.
  • D. Sarthak, G. Prateek, R. Vasudevan, O. Polit, and M. Ganapathi, Dynamic buckling of classical/non-classical curved beams by nonlocal nonlinear finite element accounting for size dependent effect and using higher-order shear flexible model, Int. J. Non-Linear Mech., vol. 125, p. 103536, 2020. DOI: 10.1016/j.ijnonlinmec.2020.103536.
  • A.M. Zenkour and A.F. Radwan, A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory, Eur. Phys. J. Plus, vol. 136, no. 2, pp. 1–16, 2021. DOI: 10.1140/epjp/s13360-021-01238-w.
  • N. Zhang, S. Zheng, and D. Chen, Size-dependent static bending, free vibration and buckling analysis of curved flexomagnetic nanobeams, Meccanica, vol. 57, pp. 1–14, 2022. DOI: 10.1007/s11012-022-01506-8.
  • C.M.C. Roque, A.J.M. Ferreira, and J.N. Reddy, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, Int. J. Eng. Sci., vol. 49, no. 9, pp. 976–984, 2011. DOI: 10.1016/j.ijengsci.2011.05.010.
  • Y. Tian, C. Zhang, and Y. Sun, The application of mesh-free method in the numerical simulation of beams with the size effect, Math. Probl. Eng., vol. 2014, pp. 1–6, 2014. DOI: 10.1155/2014/590271.
  • M.C. Ray, Mesh free model of nanobeam integrated with a flexoelectric actuator layer, Compos. Struct., vol. 159, pp. 63–71, 2017. DOI: 10.1016/j.compstruct.2016.09.011.
  • L. Wang, X. He, Y. Sun, and K.M. Liew, A mesh-free vibration analysis of strain gradient nano-beams, Eng. Anal. Bound. Elem., vol. 84, pp. 231–236, 2017. DOI: 10.1016/j.enganabound.2017.09.001.
  • S. Sidhardh and M.C. Ray, Element-free Galerkin model of nano-beams considering strain gradient elasticity, Acta Mech., vol. 229, no. 7, pp. 2765–2786, 2018. DOI: 10.1007/s00707-018-2139-x.
  • M.H. Ghadiri Rad, F. Shahabian, and S.M. Hosseini, Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method, Steel Compos. Struct., vol. 32, no. 3, pp. 293–304, 2019.
  • M. Rezaiee-Pajand and M. Mokhtari, A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams, J. Braz. Soc. Mech. Sci. Eng., vol. 41, no. 7, pp. 1–23, 2019. DOI: 10.1007/s40430-019-1799-3.
  • Isa Ahmadi, Vibration analysis of 2D-functionally graded nanobeams using the nonlocal theory and meshless method, Eng. Anal. Bound. Elem., vol. 124, pp. 142–154, 2021. DOI: 10.1016/j.enganabound.2020.12.010.
  • G.L. She, H.B. Liu, and B. Karami, Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets, Thin-Walled Struct., vol. 160, p. 107407, 2021. DOI: 10.1016/j.tws.2020.107407.
  • G. Prateek, D. Sarthak, R. Vasudevan, M. Haboussi, and M. Ganapathi, Large amplitude free vibration analysis of isotropic curved nano/microbeams using a nonlocal sinusoidal shear deformation theory-based finite element method, Int. J. Struct. Stab. Dyn., vol. 21, no. 5, p. 2150074, 2021. DOI: 10.1142/S0219455421500747.
  • I. Ahmadi, Free vibration of multiple-nanobeam system with nonlocal Timoshenko beam theory for various boundary conditions, Eng. Anal. Bound. Elem., vol. 143, pp. 719–739, 2022. DOI: 10.1016/j.enganabound.2022.07.011.
  • A. Karamanli and T.P. Vo, Finite element model for free vibration analysis of curved zigzag nanobeams, Compos. Struct., vol. 282, p. 115097, 2022. DOI: 10.1016/j.compstruct.2021.115097.
  • G.R. Liu, Meshfree Methods: Moving beyond the Finite Element Method, CRC Press Boca Raton, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.