670
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure reconstruction using diffusion-based generative models

& ORCID Icon
Pages 4443-4461 | Received 02 Feb 2023, Accepted 29 Mar 2023, Published online: 20 Apr 2023

References

  • R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L.C. Brinson, D.W. Apley, W.K. Liu, and W. Chen, Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Prog. Mater. Sci., vol. 95, pp. 1–41, 2018. DOI: 10.1016/j.pmatsci.2018.01.005.
  • S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers, Generation of 3D representative volume elements for heterogeneous materials: A review, Prog. Mater. Sci., vol. 96, pp. 322–384, 2018. DOI: 10.1016/j.pmatsci.2018.02.003.
  • P. Seibert, A. Raßloff, K. Kalina, M. Ambati, and M. Kästner, Microstructure characterization and reconstruction in Python: MCRpy, Integr. Mater. Manuf. Innov., vol. 11, no. 3, pp. 450–466, 2022. DOI: 10.1007/s40192-022-00273-4.
  • P. Seibert, A. Raßloff, M. Ambati, and M. Kästner, Descriptor-based reconstruction of three-dimensional microstructures through gradient-based optimization, Acta Mater., vol. 227, pp. 117667, 2022. DOI: 10.1016/j.actamat.2022.117667.
  • X. Li, Z. Yang, L.C. Brinson, A. Choudhary, A. Agrawal, and W. Chen, A deep adversarial learning methodology for designing microstructural material systems, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2018. pp. V02BT03A008. DOI: 10.1115/DETC2018-85633.
  • M. Sahimi, and P. Tahmasebi, Reconstruction, optimization, and design of heterogeneous materials and media: Basic principles, computational algorithms, and applications, Phys. Rep., vol. 939, pp. 1–82, 2021. DOI: 10.1016/j.physrep.2021.09.003.
  • B.-S. Lee, and W.-R. Yu, Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications, Funct. Compos. Struct., vol. 2, no. 1, pp. 012001, 2020. DOI: 10.1088/2631-6331/ab7a8c.
  • D.-W. Kim, S.-M. Park, and J.H. Lim, Prediction of the transverse elastic modulus of the unidirectional composites by an artificial neural network with fiber positions and volume fraction, Funct. Compos. Struct., vol. 3, no. 2, pp. 025003, 2021. DOI: 10.1088/2631-6331/abf8f8.
  • D. Singh, R. Kumar, and R. Vaish, Finite element-based homogenization model to determine effective properties of 0–3 and 1–3 electrostrictive composite, Funct. Compos. Struct., vol. 4, no. 4, pp. 045007, 2022. DOI: 10.1088/2631-6331/aca753.
  • H.J. Lim, H. Choi, S.-J. Yoon, S.W. Lim, C.-H. Choi, and G.J. Yun, Micro-CT image-based reconstruction algorithm for multiscale modeling of Sheet Molding Compound (SMC) composites with experimental validation, Compos. Mater. Engin., vol. 3, pp. 221–239, 2021.
  • A. Cherouat, and H. Borouchaki, Advanced numerical tool for composite woven fabric preforming, Adv. Aircraft Spacecraft Sci., vol. 2, no. 1, pp. 1–16, 2015. DOI: 10.12989/aas.2015.2.1.001.
  • H. Xu, D.A. Dikin, C. Burkhart, and W. Chen, Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials, Comput. Mater. Sci., vol. 85, pp. 206–216, 2014. DOI: 10.1016/j.commatsci.2013.12.046.
  • Y. Jiao, F. Stillinger, and S. Torquato, Modeling heterogeneous materials via two-point correlation functions: Basic principles, Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 76, no. 3 Pt 1, pp. 031110, 2007. DOI: 10.1103/PhysRevE.76.031110.
  • H. Kumar, C. Briant, and W. Curtin, Using microstructure reconstruction to model mechanical behavior in complex microstructures, Mech. Mater., vol. 38, no. 8–10, pp. 818–832, 2006. DOI: 10.1016/j.mechmat.2005.06.030.
  • Z. Jiang, W. Chen, and C. Burkhart, Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization, J Microsc., vol. 252, no. 2, pp. 135–148, 2013. DOI: 10.1111/jmi.12077.
  • A. Senthilnathan, P. Acar, and M. De Graef, Markov Random Field based microstructure reconstruction using the principal image moments, Mater. Charact., vol. 178, pp. 111281, 2021. DOI: 10.1016/j.matchar.2021.111281.
  • R. Bostanabad, A.T. Bui, W. Xie, D.W. Apley, and W. Chen, Stochastic microstructure characterization and reconstruction via supervised learning, Acta Mater., vol. 103, pp. 89–102, 2016. DOI: 10.1016/j.actamat.2015.09.044.
  • S. Yu, Y. Zhang, C. Wang, W.-K. Lee, B. Dong, T.W. Odom, C. Sun, and W. Chen, Characterization and design of functional quasi-random nanostructured materials using spectral density function, J. Mech. Des., vol. 139, no. 7, pp. 071401, 2017. DOI: 10.1115/1.4036582.
  • A. Iyer, R. Dulal, Y. Zhang, U.F. Ghumman, T. Chien, G. Balasubramanian, and W. Chen, Designing anisotropic microstructures with spectral density function, Comput. Mater. Sci., vol. 179, pp. 109559, 2020. DOI: 10.1016/j.commatsci.2020.109559.
  • S. Torquato, Random Heterogeneous Materials, Interdisciplinary Applied Mathematics. Springer, New York, 2013.
  • C. Yeong, and S. Torquato, Reconstructing random media, Phys. Rev. E., vol. 57, no. 1, pp. 495–506, 1998. DOI: 10.1103/PhysRevE.57.495.
  • S. Torquato, Statistical description of microstructures, Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 77–111, 2002. DOI: 10.1146/annurev.matsci.32.110101.155324.
  • Y. Liu, M.S. Greene, W. Chen, D.A. Dikin, and W.K. Liu, Computational microstructure characterization and reconstruction for stochastic multiscale material design, Comput-Aided. Des., vol. 45, no. 1, pp. 65–76, 2013. DOI: 10.1016/j.cad.2012.03.007.
  • P. Seibert, M. Ambati, A. Raßloff, and M. Kästner, Reconstructing random heterogeneous media through differentiable optimization, Comput. Mater. Sci., vol. 196, pp. 110455, 2021. DOI: 10.1016/j.commatsci.2021.110455.
  • A. Cecen, B. Yucel, and S.R. Kalidindi, A generalized and modular framework for digital generation of composite microstructures, J. Compos. Sci., vol. 5, no. 8, pp. 211, 2021. DOI: 10.3390/jcs5080211.
  • X. Li, Y. Zhang, H. Zhao, C. Burkhart, L.C. Brinson, and W. Chen, A transfer learning approach for microstructure reconstruction and structure-property predictions, Sci Rep., vol. 8, no. 1, pp. 13, 2018. DOI: 10.1038/s41598-018-31571-7.
  • Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems, 30th Conference on Neural information Processing Systems (NIPS 2016), Barcelona, Spain. vol. 29, 2016.
  • T. Guo, D.J. Lohan, R. Cang, M.Y. Ren, and J.T. Allison, An indirect design representation for topology optimization using variational autoencoder and style transfer, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018. pp. 0804. DOI: 10.2514/6.2018-0804.
  • K.M. Guan, T.I. Anderson, P. Creux, and A.R. Kovscek, Reconstructing porous media using generative flow networks, Comput. Geosci., vol. 156, pp. 104905, 2021. DOI: 10.1016/j.cageo.2021.104905.
  • L. Dinh, D. Krueger, and Y. Bengio, Nice: Non-linear independent components estimation, arXiv Preprint arXiv., vol. 00796, 2014.
  • D.P. Kingma, and P. Dhariwal, Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, vol. 31, 2018.
  • S. Kench, and S.J. Cooper, Generating 3D structures from a 2D slice with GAN-based dimensionality expansion, arXiv Preprint arXiv., pp. 07708, 2021.
  • A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A.A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, 2018. DOI: 10.1109/MSP.2017.2765202.
  • I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial networks, Commun. ACM., vol. 63, no. 11, pp. 139–144, 2020. DOI: 10.1145/3422622.
  • I. Ferreira, L. Ochoa, and A. Koeshidayatullah, On the generation of realistic synthetic petrographic datasets using a style-based GAN, Sci Rep., vol. 12, no. 1, pp. 14, 2022. DOI: 10.1038/s41598-022-16034-4.
  • A. Henkes, and H. Wessels, Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics, arXiv Preprint arXiv., pp. 01693, 2022.
  • A. Sauer, K. Schwarz, and A. Geiger, Stylegan-xl: Scaling stylegan to large diverse datasets, ACM SIGGRAPH 2022 Conference Proceedings, 2022. pp. 1–10. DOI: 10.1145/3528233.3530738.
  • T. Karras, S. Laine, and T. Aila, A style-based generator architecture for generative adversarial networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019. pp. 4401–4410.
  • J. Ho, C. Saharia, W. Chan, D.J. Fleet, M. Norouzi, and T. Salimans, Cascaded diffusion models for high fidelity image generation, J. Mach. Learn. Res., Microtome Publishing, Brookline, vol. 23, pp. 47:41–47:33, 2022.
  • P. Dhariwal, and A. Nichol, Diffusion models beat gans on image synthesis, Adv. Neural Inform. Process. Syst., 35th Conference on Neural Information Processing Systems (NeurIPS 2021), vol. 34, pp. 8780–8794, 2021.
  • A.Q. Nichol, and P. Dhariwal, Improved denoising diffusion probabilistic models, International Conference on Machine Learning, PMLR, Proceedings of the 38th International Conference on Machine Learning, 2021, pp. 8162–8171.
  • M. Armandpour, A. Sadeghian, C. Li, and M. Zhou, Partition-guided gans, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. pp. 5099–5109.
  • S. Li, Y. Du, J.B. Tenenbaum, A. Torralba, and I. Mordatch, Composing ensembles of pre-trained models via iterative consensus, arXiv Preprint arXiv., pp. 11522, 2022.
  • S. Lala, M. Shady, A. Belyaeva, and M. Liu, Evaluation of mode collapse in generative adversarial networks. In: High Performance Extreme Computing, 2018.
  • A. Brock, J. Donahue, and K. Simonyan, Large scale GAN training for high fidelity natural image synthesis, arXiv Preprint arXiv., pp. 11096, 2018.
  • T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, Spectral normalization for generative adversarial networks, arXiv Preprint arXiv., pp. 05957, 2018.
  • L. Wang, W. Chen, W. Yang, F. Bi, and F.R. Yu, A state-of-the-art review on image synthesis with generative adversarial networks, IEEE Access., vol. 8, pp. 63514–63537, 2020. DOI: 10.1109/ACCESS.2020.2982224.
  • H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, Self-attention generative adversarial networks, International Conference on Machine Learning, PMLR, 2019, pp. 7354–7363.
  • J. Song, C. Meng, and S. Ermon, Denoising diffusion implicit models, arXiv Preprint arXiv., pp. 02502, 2020.
  • J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural Inform. Process. Syst., vol. 33, pp. 6840–6851, 2020.
  • L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, Diffusion models: A comprehensive survey of methods and applications, arXiv Preprint arXiv., pp. 00796, 2022.
  • J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, Deep unsupervised learning using nonequilibrium thermodynamics, International Conference on Machine Learning, PMLR, Proceedings of the 32nd International Conference on Machine Learning, Lille, France.2015. pp. 2256–2265.
  • H. Cao, C. Tan, Z. Gao, G. Chen, P.-A. Heng, and S.Z. Li, A survey on generative diffusion model, arXiv Preprint arXiv., pp. 02646, 2022.
  • Y. Song, and S. Ermon, Generative modeling by estimating gradients of the data distribution. In: Advances in Neural Information Processing Systems, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. vol. 32, 2019.
  • S. Mohamed, and B. Lakshminarayanan, Learning in implicit generative models, arXiv Preprint arXiv., pp. 03483, 2016.
  • M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30, 2017.
  • T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila, Improved Precision and Recall Metric for Assessing Generative Models, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. vol. 32, 2019.
  • K.A. Hart, and J.J. Rimoli, MicroStructPy: A statistical microstructure mesh generator in Python, SoftwareX., vol. 12, pp. 100595, 2020. DOI: 10.1016/j.softx.2020.100595.
  • O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2015. pp. 234–241.
  • T. Salimans, A. Karpathy, X. Chen, and D.P. Kingma, Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications, arXiv Preprint arXiv., pp. 05517, 2017.
  • C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. pp. 2818–2826.
  • A. Borji, Pros and cons of GAN evaluation measures: New developments, Computer Vision Image Understanding., vol. 215, pp. 103329, 2022. DOI: 10.1016/j.cviu.2021.103329.
  • M.F. Naeem, S.J. Oh, Y. Uh, Y. Choi, and J. Yoo, Reliable fidelity and diversity metrics for generative models, International Conference on Machine Learning, PMLR, 2020. pp. 7176–7185.
  • B. Lu, and S. Torquato, Lineal-path function for random heterogeneous materials, Phys Rev A., vol. 45, no. 2, pp. 922–929, 1992. DOI: 10.1103/physreva.45.922.
  • A. Cecen, T. Fast, and S.R. Kalidindi, Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure, Integr Mater Manuf Innov., vol. 5, no. 1, pp. 1–15, 2016. DOI: 10.1186/s40192-015-0044-x.
  • R. Bostanabad, W. Chen, and D. Apley, Characterization and reconstruction of 3D stochastic microstructures via supervised learning, J Microsc., vol. 264, no. 3, pp. 282–297, 2016. DOI: 10.1111/jmi.12441.
  • C. Meehan, K. Chaudhuri, and S. Dasgupta, A non-parametric test to detect data-copying in generative models, International Conference on Artificial Intelligence and Statistics, 2020.
  • D.P. Kingma, and J. Ba, Adam: A method for stochastic optimization, arXiv Preprint arXiv., vol. 1412, pp. 6980, 2014.
  • A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. vol. 32, 2019.
  • NJSm Hansen, Hall–Petch relation and boundary strengthening, Scr. Mater., vol. 51, no. 8, pp. 801–806, 2004. DOI: 10.1016/j.scriptamat.2004.06.002.
  • F. Najafkhani, S. Kheiri, B. Pourbahari, and H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review, Archiv. Civil Mech. Engin., vol. 21, pp. 1–20, 2021.
  • A. Borbély, F. Csikor, S. Zabler, P. Cloetens, and H. Biermann, Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography, Mater. Sci. Engin.: A., vol. 367, no. 1–2, pp. 40–50, 2004. DOI: 10.1016/j.msea.2003.09.068.
  • Y. Feng, F. Thiemann, and M. Sester, Learning cartographic building generalization with deep convolutional neural networks, IJGI., vol. 8, no. 6, pp. 258, 2019. DOI: 10.3390/ijgi8060258.
  • H. Emami, M. Dong, S. Nejad-Davarani, and C. Glide-Hurst, SA-GAN: Structure-aware generative adversarial network for shape-preserving synthetic CT generation, arXiv Preprint arXiv., pp. 07044, 2021.
  • Y.-H. Su, W. Jiang, D. Chitrakar, K. Huang, H. Peng, and B. Hannaford, Local style preservation in improved gan-driven synthetic image generation for endoscopic tool segmentation, Sensors., vol. 21, no. 15, pp. 5163, 2021. DOI: 10.3390/s21155163.
  • A. Gokaslan, V. Ramanujan, D. Ritchie, K.I. Kim, and J. Tompkin, Improving shape deformation in unsupervised image-to-image translation, Proceedings of the European Conference on Computer Vision (ECCV), 2018. pp. 649–665.
  • M. Kwon, J. Jeong, and Y. Uh, Diffusion models already have a semantic latent space, arXiv Preprint arXiv., pp. 10960, 2022.
  • R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis with latent diffusion models, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022. pp. 10684–10695.
  • M.D. Rintoul, and S. Torquato, Reconstruction of the structure of dispersions, J Colloid Interface Sci., vol. 186, no. 2, pp. 467–476, 1997. DOI: 10.1006/jcis.1996.4675.
  • M. Tarantino, O. Zerhouni, and K. Danas, Random 3D-printed isotropic composites with high volume fraction of pore-like polydisperse inclusions and near-optimal elastic stiffness, Acta Mater., vol. 175, pp. 331–340, 2019. DOI: 10.1016/j.actamat.2019.06.020.
  • N. Lubbers, T. Lookman, and K. Barros, Inferring low-dimensional microstructure representations using convolutional neural networks, Phys. Rev. E., vol. 96, no. 5-1, pp. 052111, 2017. DOI: 10.1103/PhysRevE.96.052111.
  • S.G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., vol. 21, no. 4, pp. 770–788, 1984. DOI: 10.1137/0721052.
  • R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-scale optimization, SIAM J. Optim., vol. 26, no. 2, pp. 1008–1031, 2016. DOI: 10.1137/140954362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.