308
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Effects of Bacterial Toxins on Endothelial Tight Junction In Vitro: A Mechanism-Based Investigation

, &
Pages 331-347 | Received 05 Sep 2006, Accepted 17 Oct 2006, Published online: 09 Oct 2008

REFERENCES

  • Adams J. K., Tepperman B. L. Colonic production and expression of IL-4, IL-6, and IL-10 in neonatal suckling rats after LPS challenge. Am. J. Physiol. Gastrointest. Liver Physiol. 2001; 280: G755–G762
  • Ahishali B., Kaya M., Kalayci R., Uzun H., Bilgic B., Arican N., Elmas I., Aydin S., Kucuk M. Effects of lipopolysaccharide on the blood-brain barrier permeability in prolonged nitric oxide blockade-induced hypertensive rats. Int. J. Neurosci. 2005; 115: 151–168
  • Arthur F. E., Shivers R. R., Bowman P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Dev. Brain Res. 1987; 36: 155–159
  • Badger J. L., Kim K. S. Environmental growth conditions influence the ability of Escherichia coli K1 to invade brain microvascular endothelial cells and confer serum resistance Infect. Immunity 1998; 66: 5692–5707
  • Badger J. L., Wass C. A., Kim K. S. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol. Microbiol. 2000; 36: 174–182
  • Bailey D. P., Kashyap M., Bouton L. A., Murray P. J., Ryan J. J. Interleukin IL-10 induces apoptosis in developing mast cells and macrophases. J. Leuk. Biol. 2006; 80: 581–589
  • Bazzoni G., Martinez-Estrada O-M., Orsenigo F., Cordenonsi M., Citi S., Dejana S. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and OCLg. J. Biol. Chem. 2000; 275: 20520–20526
  • Bermpohl D., Halle A., Freyer D., Dagand E., Braun J. S., Bechmann I., Schroder N. W., Weber J. R. Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J. Clin. Invest 2005; 115: 1607–1615
  • Beutler B., Rietschel E. T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 2003; 3: 169–176
  • Blasig I. E., Winkler L., Lassowski B., Mueller S. L., Zuleger N., Krause E., Krause G., Gast K., Kolbe M., Piontek J. On the self-association potential of transmembrane tight junction proteins. Cell. Mol. Life Sci. 2006; 63: 505–514
  • Bouton L. A., Ramirez C. D., Bailey D. P., Yeatman C. F., Yue J., Wright H. V., Domen J., Rosato R. R., Grant S., Fischer-Stenger K., Ryan J. J. Costimulation with interleukin-4 and interleukin-10 induces mast cell apoptosis and cell-cycle arrest: the role of p53 and the mitochondrion Exp. Hematol. 2004; 32: 1137–1145
  • Boveri M., Kinsner A., Berezowski V., Lenfant A. M., Draing C., Cecchelli R., Dehouck M. P., Hartung T., Prieto P., Bal-Price A. Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience 2006; 137: 1193–1209
  • Brown R. C., Davis T. Calcium modulation of adherens and tight junction function. Stroke 2002; 33: 1706–1711
  • Brown R. C., Mark K. S., Egleton R. D., Huber J. D., Burroughs A. R., Davis T. P. Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction proteins and NFkappaB. J Cell Sci. 2003; 116: 693–700
  • Cai Z., Pan Z-L., Pang Y., Evans O. B., Rhodes P. G. Cytokine induction in fetal rat brain and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr. Res. 2000; 47: 64–72
  • Cartmell T., Luheshi G. N., Rothwell N. J. Brain sites of action of endogenous interleukin-1 in the febrile response to localized inflammation in the rat. J. Physiol. 1999; 518: 585–594
  • Ching S., Zhang H., Lai W., Quan N. Peripheral injection of lipopolysaccharide prevents brain recruitment of leukocytes induced by central injection of interleukin-1. Neuroscience 2006; 137: 717–726
  • Chio C. C., Baba T., Black K. L. Selective blood–tumor barrier disruption by leukotrienes. J. Neurosurg. 1992; 77: 407–410
  • Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 162: 156–159
  • Cucullo L., Aumayr B., Rapp E., Janigro D. Drug delivery and in vitro models of the blood-brain barrier. Curr. Opin. Drug. Disc. Dev. 2005; 8: 89–99
  • Cucullo L., McAllister M. S., Kight K., Krizanac-Bengez L., Marroni M., Mayberg M. R., Stanness K. A., Janigro D. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Br. Res. 2002; 951: 243–254
  • Deli M. A., Abraham C. S., Kataoka Y., Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 2005; 25: 59–127
  • Doran K. S., Engelson E. J., Khosravi A., Maisey H. C., Fedtke I., Equils O., Michelsen K. S., Arditi M., Peschel A., Nizet V. Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Invest. 2005; 115: 2499–2507
  • Dziarski R., Tapping R. I., Tobias P. S. Binding of bacterial peptidoglycan to CD14. J. Biol. Chem. 1998; 273: 8680–8690
  • Fan Tẋ-J., Han Lẋ-H., Cong Rẋ-S., Liang J. Caspase family and apoptosis. Acta Bioche. Biophys. Sinica 2005; 37: 719–727
  • Fanning A. S., Ma T. Y., Anderson J. M. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J. 2002; 16: 1835–1837
  • Fanning A. S., Mitic L. L., Anderson J. M. Transmembrane proteins in the tight junction barrier. J. Am. Soc. Nephrol. 1999; 10: 1337–1345
  • Fenstermacher J. D. Comparative aspects of blood-brain exchange. Fed. Proc. 1980; 39: 3201–3206
  • Franke H., Ringelstein E. B., Stogbauer F. Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics 2005; 26: 529–535
  • Fu Y., Galan J. E. A Salmonella protein antagonizes Rac-1 and CDC42 to mediate host cell recovery after bacterial invasion. Nature 1999; 401: 293–297
  • Gabeller M. M., Griffais R., Fillion G., Haour F. Expression of interleukin 1 alpha, interleukin 1 beta and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. Brain Res. Mol. Br. Res. 1995; 31: 122–130
  • Gaillard P. J., Voorwinden L. H., Nielsen J. L., Ivanov A., Atsumi R., Engman H., Ringbom C., de Boer A. G., Breimer D. D. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharmac. Sci. 2001; 12: 215–222
  • Gerhart D. Z., Broderius M. A., Drewes L. R. Cultured human and canine endothelial cells from brain microvessels. Brain Res. Bull. 1988; 21: 785–793
  • Gutierrez-Venegas G., Kawasaki-Cardenas P., Cruz-Arroyo S. R., Perez-Garzon M., Maldonado-Frias S. Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates the phosphorylation of p44 and p42 MAP kinases through CD14 and TLR-4 receptor activation in human gingival fibroblasts. Life Sci. 2006; 78: 2577–2583
  • Harry G. J., Billingsley M., Bruinink A., Campbell I. L., Classen W., Dorman D. C., Galli C., Ray D., Smith R. A., Tilson H. A. In vitro techniques for the assessment of neurotoxicity. Environ. Health Persp. 1998; 106(Supp1)131–158
  • Hartz A. M., Bauer B., Fricker G., Miller D. S. Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol. Pharmacol. 2006; 69: 462–470
  • Haskins J., Gu L., Wittchen E. S., Hibbard J., Stevenson B. R. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 1998; 141: 199–208
  • Hermann C., Spreitzer I., Schroder N. W., Morath S., Lehner M. D., Fischer W., Schutt C., Schumann R. R., Hartung T. Cytokine induction by purified lipoteichoic acids from various bacterial species–role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur. J. Immunol. 2002; 32: 541–551
  • Hetman M., Kharebava G. Survival signaling pathways activated by NMDA receptors. Curr. Topics Med. Chem. 2006; 6: 787–799
  • Hirase T., Staddon J. M., Saitou M., Ando-Akatsuka Y., Itoh M., Furuse M., Fujimoto K., Tsukita S., Rubin L. L. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 1997; 110: 1603–1613
  • Hurst R. D., Azam S., Hurst A., Clark J. B. Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood-brain barrier. Br. Res. 2001; 894: 181–188
  • Isowa N., Xavier A. M., Dziak E., Opas M., McRitchie D. I., Slutsky A. S., Keshavjee S. H., Liu M. LPS-induced depolymerization of cytoskeleton and its role in TNF-α production by rat pneumocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 1999; 277: L606–L615
  • Kim B. Y., Kang J., Kim K. S. Invasion processes of pathogenic Escherichia coli. Int. J. Med. Microbiol. 2005; 295: 463–470
  • Kinsner A., Pilotto V., Deininger S., Brown G. C., Coecke S., Hartung T., Bal-Price A. Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J. Neurochem. 2005; 95: 1132–1143
  • Kneisel U., Wolburg H. Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol. 2000; 20: 57–76
  • Krizbai I. A., Bauer H., Bresgen N., Eckl P. M., Farkas A., Szatmari E., Traweger A., Wejksza K., Bauer H. C. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell. Mol. Neurobiol. 2005; 25: 129–139
  • Lai C. H., Kuo K. H., Leo J. M. Critical role of actin in modulating BBB permeability. Br. Res. Br. Res. Rev. 2005; 50: 7–13
  • Lai C. H., Kuo K. H. The critical component to establish in vitro BBB model. Br. Res. Br. Res. Rev. 2005; 50: 258–265
  • Li S-H., Lam S., Cheng A. L., Li X-J. Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Human Mol. Genet. 2000; 9: 2859–2867
  • Loucks F. A., Le S. S., Zimmermann A. K., Ryan K. R., Barth H., Aktories K., Linseman D. A. Rho family GTPase inhibition reveals opposing effects of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and Janus kinase/signal transducer and activator of transcription signaling cascades on neuronal survival. J. Neurochem. 2006; 97: 957–667
  • Madara J. L., Barenberg D., Carlson S. Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional change selectivity. J. Cell Biol. 1986; 102: 2125–2136
  • Maslin C. L., Kedzierska K., Webster N. L., Muller W. A., Crowe S. M. Transendothelial migration of monocytes: the underlying molecular mechanisms and consequences of HIV-1 infection. Curr. HIV Res. 2005; 3: 303–317
  • McClenahan D. J., Sotos J. P., Czuprynski C. J. Cytokine response of bovine mammary gland epithelial cells to Escherichia coli, coliform culture filtrate, or lipopolysaccharide. Am. J. Vet. Res. 2005; 66: 1590–1597
  • Miller D. J., Eckert J. J., Lazzari G., Duranthon-Richoux V., Sreenan J., Morris D., Galli C., Jean-Paul Renard JẋP., Flemming Tẋ P. Tight junction messenger RNA expression levels in bovine embryos are dependent upon the ability to compact and in vitro culture methods. Biol. Reprod. 2003; 68: 1394–1402
  • Morita K., Itoh M., Saitou M., Ando-Akatsuka Y., Furuse M., Yoneda K., Imamura S., Fujimoto K., Tsukita S. Subcellular distribution of tight junction-associated proteins (occludin, ZO-1, ZO-2) in rodent skin. J. Invest. Dermatol. 1998; 110: 862–866
  • Pardridge W. M. Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 1981; 20: 246–254
  • Persidsky Y., Ghorpade A., Rasmussen J., Limoges J., Juan-Liu X., Stins Milan Fiala M., Way D., Sik Kim K., Witte M. H., Weinand M., Carhart L. R., Gendelman H. E. Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am. J. Pathol. 1999; 155: 1599–1611
  • Philpott D. J., Mckay D. M., Sherman P. M., Perdue M. H. Infection of T84 intestinal epithelial cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am. J. Physiol. 1996; 270: G634–G645
  • Pialoux G., Fournier S., Moulignier A., Poveda J. D., Clavel F., Dupont B. Central nervous system as a sanctuary for HIV-1 infection despite treatment with zidovudine, lamivudine and indinavir. AIDS 1997; 11: 1302–1303
  • Ponting C. P., Phillips C., Davies K. E., Blake D. J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioassays 1997; 19: 469–479
  • Prieto P., Blaauboer B. J., de Boer A. G., Boveri M., Cecchelli R., Clemedson C., Coecke S., Forsby A., Galla H. J., Garberg P., Greenwood J., Price A., Tahti H. European Centre for the Validation of Alternative Methods. Blood-brain barrier in vitro models and their application in toxicology. The report and recommendations of ECVAM Workshop 49. ATLA-Alternatives to Lab Animals 2004; 32: 37–50
  • Quan N., He L., Lai W. Endothelial activation is an intermediate step for peripheral lipopolysaccharide induced activation of paraventricular nucleus. Br. Res. Bull. 2003; 59: 447–452
  • Ring A., Weiser, J. N., Tuomanen E. I. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 1998; 102: 347–360
  • Schirmacher A., Winters S., Fischer S., Goeke J., Galla H. J., Kullnick U., Ringelstein E. B., Stogbauer F. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro. Bioelectromagnetics 2000; 21: 338–345
  • Schroder N. W., Morath S., Alexander C., Hamann L., Hartung T., Zahringer U., Gobel U. B., Weber J. R., Schumann R. R. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 2003; 278: 15587–15594
  • Si Q., Nakamura Y., Kataoka K. A serum factor enhances production of nitric oxide and tumor necrosis factor-alpha from cultured microglia. Exp. Neurol. 2000; 162: 89–97
  • Singh A. K., Jiang Y. How does peripheral lipopolysaccharide induce gene expression in the brain of rats?. Toxicology 2004a; 201: 197–207
  • Singh A. K., Jiang Y. Differential activation of NFκB/RelA-p50 and NFκB/p50-p50 in control and alcohol-drinking rats subjected to carrageenin-induced pleurisy. Mediators Inflamm. 2004b; 13: 255–262
  • Stanness K. A., Neumaier J. F., Sexton T. J., Grant G. A., Emmi A., Maris D. O., Janigro D. A new model of the blood–brain barrier: co-culture of neuronal, endothelial and glial cells under dynamic conditions. Neuroreport 1999; 10: 3725–3731
  • Stanness K. A., Westrum L. E., Fornaciari E., Mascagni P., Nelson J. A., Stenglein S. G., Myers T., Janigro D. Morphological and functional characterization of an in vitro blood-brain barrier model. Br. Res. 1997; 771: 329–342
  • Stins M. F., Badger J., Sik Kim K. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathol. 2001; 30: 19–28
  • Strelow L., Janigro D., Nelson J. A. Persistent SIV infection of a blood-brain barrier model. J. Neurovirol. 2002; 8: 270–280
  • Tafazoli F. Cẋ Q., Zeng M. K., Estes Kẋ-E., Magnusson K., Svensson L. NSP4 enterotoxin of Rotavirus induces paracellular leakage in polarized epithelial cells. J. Virol 2001; 75: 1540–1546
  • Wolburg H., Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vas. Pharmacol. 2002; 38: 323–337
  • Wong D., Dorovini-Zis K., Vincent S. R. Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier Exp. Neurol. 2004; 190: 446–455
  • Xaio H., Banks W. A., Niehoff W. A., Morley J. E. Effects of LPS in the permeability of the blood-brain barrier for insulin. Br. Res. 2001; 896: 36–42
  • Yan E., Castillo-Melendez M., Nicholls T., Hirst J., Walker D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr. Res. 2004a; 55: 855–863
  • Yan S. R., Qing G., Byers D. M., Stadnyk A. W., Al-Hertani W., Bortolussi R. Role of MyD88 in diminished tumor necrosis factor alpha production by newborn mononuclear cells in response to lipopolysaccharide. Infect. Immunity 2004b; 72: 1223–1229
  • Youakim A., Ahdieh M. Interferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. Gastrointest. Liver Physiol. 1999; 276: G1279–G1288
  • Zysk G., Schneider-Wald B. K., Hwang J. H., Bejo L., Kim K. S., Mitchell T. J., Hakenbeck R., Heinz H. P. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae Infect. Immunity. 2001; 69: 845–852

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.