109
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Inhibition of Tumor Necrosis Factor and Nitrosative/Oxidative Stresses by Ziziphora Clinopoides (Kahlioti); A Molecular Mechanism of Protection Against Dextran Sodium Sulfate-Induced Colitis in Mice

, , , , , & show all
Pages 183-189 | Received 01 Aug 2007, Accepted 01 Nov 2007, Published online: 20 Oct 2008

REFERENCES

  • M. Abdollahi, A. Bahreini-Moghadam, B. Emami, F. Fooladian, and K. Zafari. (2003b). Increasing intracellular cAMP and cGMP inhibits cadmium-induced oxidative stress in rat submandibular saliva. Comp. Biochem. Physio. C Toxicol. Pharmacol. 135:331–336..
  • M. Abdollahi, T.S. Chan, V. Subrahmanyam, and P.J. O'Brien. (2003a). Effects of phosphodiesterase 3,4,5 inhibitors on hepatocyte cAMP levels, glycogenolysis, gluconeogenesis and susceptibility to a mitochondrial toxin. Mol. Cell Biochem. 252:205–211.
  • M. Abdollahi, F. Fooladian, B. Emami, K. Zafari, and A. Bahreini-Moghadam. (2003c). Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum. Exp. Toxicol. 22:587–592.
  • H. Aebi. (1984). Catalase in vitro. Methods Enzymol. 105:121–126.
  • D.S. Barbosa, R. EL Cecchini, M.Z. Kadri, M.A. Rodriguez, R.C. Burini, and I. Dichi. (2003). Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19:837–842.
  • N.F. Belyaev, and A.M. Demeubaeva. (1999). Chromatographic study of the composition of the essential oil pf Ziziphora clinopodiodes, a vicarious form of Origanum vulgare. Chem. Nat. Comp. 35:52–54.
  • I.F. Benzie, and J.J. Strain. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299:15–27.
  • N.K. Boughton-Smith, S.M. Evans, C. Hawkey, A.T. Cole, M. Balsitis, B.J. R. Whittle, and S. Moncada. (1993). Nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Lancet 342:338–340.
  • A.L. Colon, L.A. Menchen, I. Lizasoain, J.C. Leza, P.L. Menchen, V. Gonzalez-Lara, M.A. Moro, and P. Lorenza. (2000). Inducible nitric oxide synthase activity is expressed not only in inflamed but also in normal colonic mucosa in patients with ulcerative colitis. A potential prognostic marker. Am. J. Gastroenterol. 95:1371–1373.
  • E.M. Brands Conner, J.M. Davis, F.S. Laroux, V.J. Palombella, J.W. Fuseler, D.Y. Kang, R.E. Wolf, and M.B. Grisham. (1997). Proteasome inhibition attenuates nitric oxide synthase expression. VCAM-1 transcription and the development of Chronic Colitis. J. Pharm. Exp. Ther. 282:1615–1622.
  • S.L. Cuppett, and C.A. Hall. (1998). Antioxidant activity of the Labiatae. Adv. Food Nutr. Res. 42:245–271.
  • S. Cuzzocrea, E. Mazzon, L. Dugo, A.R Caputi, D.P. Riley, and D. Salvemini. (2001). Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis. Eur. J. Pharmacol. 432:79–89.
  • R.C. Evans, L. Clarke, P. Heath, S. Stephens, A.I. Morris, and J.M. Rhodes. (1997). Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571. Aliment. Pharmacol. Ther. 11:1031–1035.
  • H. Ghafari, S. Yasa, A. Mohammadirad, G. Dehghan, M.J. Zamani, S. Nikfar, R. Khorasani, B. Minaie, and M. Abdollahi. (2006). Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum. Exp. Toxicol. 25:325–332.
  • G. Ghazanfari, B. Minaie, N. Yasa, L. Ashtaral-Nakhai, A. Mohammadirad, S. Nikfar, G. Dehghan, V. Shetab Boushehri, H. Jamshidi, R. Khorasani, A. Salehnia, and M. Abdollahi. (2006). Biochemical and histopathological evidences for beneficial effects of Satureja Khuzestanica Jamzad essential oil on the mouse model of inflammatory bowel diseases. Toxicol. Mech. Methods 16:365–372.
  • P. Griess. (1879). Bemerkungen zu der abhandlung der H.H.W eselsky und Benedikt ‘Ueber einige azoverbindungen’. Chem. Ber. 12:426–28.
  • M.B. Grisham. (1994). Oxidant and free radicals in inflammatory bowel disease. Lancet 344:859–861.
  • S.S. Gross, and M.S. Wolin. (1995). Nitric oxide: pathophysiological mechanisms. Annu. Rev. Physiol. 57:737–769.
  • M. Hernandez-Perez, R.M. Rabanal, M.C. de la Torre, and B. Rodriguez. (1995). Analgesic, anti-inflammatory, antipyretic and haematological effects of aethiopinone, an o-naphthoquinone diterepnoid from Saliva aethiopis roots and two hemisynthetic derivatives. Planta Med. 61:505–509.
  • H. Hosseinzadeh, H.M. H. Khodaparast, and H. Shokohizadeh. (1998). Antihyperglycemic effect of Saliva Iriifolia Benth leaf and seed extract in mice. Irn. J. Med. Soi. 23:78–80.
  • M.L. Hu, and C.J. Dillard. (1994). Plasma SH and GSH measurement. Methods Enzymol. 233:385–387.
  • G. Jahanshahi, V. Motavasel, A. Rezaie, A.A. Hashtroudi, N.E. Daryani, and M. Abdollahi. (2004). Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases. Dig. Dis. Sci. 49:1752–1757.
  • A. Keshavarzian, A. Banan, A. Farhadi, S. Komanduri, E. Mutlu, Y. Zhang, and J.Z. Fields. (2003). Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut 52:720–728.
  • T Kitahora, K. Suzuki, H. Asakura, T. Yoshida, M. Suematsu, M. Watanabe, S. Asiso, and M. Tsuchiya. (1988). Reactive oxygen species generated by monocytes and polymorphonuclear cells in Crohn's disease. Dig. Dis. Sci. 33:951–955.
  • F. Kokkalou, and I Kapetanidis. (1988). Flavonoids and phenolic acids in Saliva horminum L. (Lamiaceae). Pharm. Acta Helv. 63:90–92.
  • L. Kruidenier, and H.W. Verspaget. (2002). Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease–radicals or ridiculous?. Aliment. Pharmacol. Ther. 16:1997–2015.
  • L. Le Marchand. (2002). Cancer preventive effects of flavonoids—a review. Biomed. Pharmacother. 56:296–301.
  • O.H. Lowry, N.J. Roserbrough, A.L. Farr, and R.J. Randell. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.
  • D.M. McCafferty. (2000). Peroxynitrite and inflammatory bowel disease. Gut 46:436–439.
  • G.E. Meral, S. Konyalioglu, and B. Ozturk. (2002). Essential oil composition and antioxidant activity of andemic Ziziphora taurica subsp. Cleonioides. Fitoterapia 73:716–718.
  • T.P. J. Mulder, H.W. Verspaget, and A.R. Janssens. (1991). Decreased in two intestinal copper/zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32:1146–1150.
  • Y Naito, T. Takagi, T. Ishikawa, O. Handa, N. Matsumoto, N. Yagi, K. Matsuyama, N. Yoshida, and T. Yoshikawa. (2001). The inducible nitric oxide synthase inhibitor ONO-1741 blunts dextran sulfate sodium colitis in mice. Eur. J. Pharmacol. 12:91–99.
  • Y. Naito, T. Takagi, K Uchiyama, M. Kuroda, S. Kokura, H. Ichikawa, R. Yanagisawa, K. Inoue, H. Takano, M. Satoh, N. Yoshida, T. Okanoue, and T. Yoshikawa. (2004). Reduced intestinal inflammation induced by dextran sodium sulfate in interleukin-6-deficient mice. Int. J. Mol. Med. 14:191–196.
  • L. Nakhai, A. Mohammadirad, N. Yasa, B. Minaie, S. Nikfar, G. Ghazanfari, M.J. Zamani, G. Dehghan, H. Jamshidi, V. Shetab Bousheri, R. Khorasani, and M. Abdollahi. (2007). Benefit of Zataria multiflora Bioss in exprimental model on mouse inflammatory bowel disease. Evid. Based Complement. Alternat. Med. 4:43–50.
  • C. Nathan, and Q.-W. Xie. (1994). Nitric oxide syntheses: roles, tolls, and controls. Cell 78:915–918.
  • M.F. Neurath, I. Fuss, M. Pasparakis, L. Alexopoulou, S. Haralambous, K.H. Meyer zum Buschenfelde, W. Strober, and G. Kollias. (1997). Predominant pathogenic role of tumor necrosis factor in exprimental colitis in mice. Eur. J. Immunol. 27:1743–1750.
  • T. Okuda, T. Yoshida, and T Hatano. (1994). Food phytochemicals for cancer prevention. In Chemistry and Antioxidant Effects of Phenolic Compounds from Licorice, Tea, and Labiatae Herb, C.T. Ho, T. Osawa, M.T. Hwan and R.T. Rosen. (Eds). American Chemical Society, pp 132–143.
  • N. Osman, D. Adawi, S. Ahrne, B. Jeppsson, and G. Molin. (2004). Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig. Dis. Sci. 49:320–327.
  • Y. Ozturk, S Aydin, B. Tecik, and K.H. C. Baser. (1995). Effects of essential oils from certain Ziziphora species on swimming performance in mice. Phytother. Res. 9:225–227.
  • D.H. Present, P. Rutgeerts, S. Targan, S.B. Hanauer, L. Mayer, R.A. van Hogezand, D.K. Podolsky, B.E. Sands, T. Braakman, K.L. De-Woody, T.F. Schaible, and S.J. van Deventer. (1999). Infliximab for the treatment of fistulas in patients with Crohn's disease. N. Engl. J. Med. 340:1398–1405.
  • R.L. Prior, and G. Cao. (1999). In vivo total antioidant capacity comparison of different analytical methods. Free Radic. Biol. Med. 27:1173–1181.
  • D. Rachimilewitz, J.S. Stamler, F. Karmeli, M.E. Mullins, D.J. Singel, J.V. Lascalzo, R.J. Xavier, and D.K. Podolsky. (1993). Peroxynitrite-induced rat colitis—A new model of colinic inflammation. Gas-troentero/ogy 105:1681–1688.
  • R. Rahimi, S. Nikfar, and M. Abdollahi. (2007). Do anti-tumor necrosis factors induce response and remission in patients with acute refractory Crohn's disease? A systematic meta-analysis of controlled clinical trials. Biomed. Pharmacother. 61:75–80.
  • M. Ramesh, Y.N. Rao, A.V. Rao, M.C. Prabhakar, C.S. Rao, N. Muralidhar, and B.M. Reddy. (1998). Antinociceptive and anti-inflammatory activity of a flavonoid isolated from Caralluma attenuata. J. Ethnopharmacol. 62:63–66.
  • K.H. Rechinger (1982). Flora iranica, Volume 150. Akademische Druck-u. verlagsanstalt: Graz, Austria, pp. 483–485.
  • A. Rezaie, R.D. Parker, and M. Abdollahi. (2007). Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause?. Dig. Dis. Sci. 52:2015–2021.
  • J. Rugtveit, G. Haraldsen, A.K. Hogasen, A. Bakka, P. Brandtzaeg, and H. Scott. (1995). Respiratory burst of intestinal macrophages in inflammatory bowel disease is mainly caused by CD14+LI+monocyte-derived cells. Gut 37:367–376.
  • P. Salehi, A. Sonboli, F. Eftekhar, S. Nejad-Ebrahimi, and M. Yousefzadi. (2005). Essential oil composition, antibacterial and antioxidant activity of the oil and various extracts of Ziziphora clinopodioides subsp. rigida (BOISS.) RECH. f. from Iran. Biol. Pharm. Bull. 28:1892–1896.
  • R. Sanchez de Medina, B Vera, J. Galvez, and A. Zarzuelo. (2002). Effect of quercitrin on the early stages of hapten induced colonic inflammation in the rat. Life Sci. 70:3097–3108.
  • K. Satho. (1978). Serum lipid peroxidation in cerebrovascular disorders determined by a new colorimetric method. Clin. Chem. Acta 90:37–43.
  • J. Segui, M. Gironella, M. Sans, S. Granell, F. Gil, M. Gimeno, P. Coronel, J.M. Pique, and J. Panes. (2004). Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. J. Leukoc. Biol. 76:537–544.
  • E. Sezik, and G. Tumen. (1988). Ziziphora tenuior L, a new source of pulegone. Flav. Fragr. J. 6:101–103.
  • I.I. Singer, D.W. Kawka, S. Scott, J.R. Weidner, R.A. Mumford, T.E. Riehl, and W.F. Stenson. (1996). Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroentero/ogy 111:871–885.
  • G. Tumen, and Z. Ayhan. (1992). Antimicrobia; activity of essential oilsof two Ziziphora species growing in Turkey. Fitoterapia 63:264–265.
  • A. Tuzun, A. Erdil, V Inal, A. Aydin, S. Bagci, Z. Yesilova, A. Sayal, N. Karaeren, and K. Dagalp. (2002). Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin. Biochem. 35:569–572.
  • H. Ukeda, S. Maeda, T. Ishii, and M. Swamura. (1997). Spectropho-tometric assay for superoxide dismutase based on tetrazolium salt 3’[(Phenylamino)-carbonyl]-3,4-tetrazolium-bis (4-methoxy-6-nitro) benzensulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. 251:206–209.
  • I. Alarcon dela Villegas, C Lastra, A. Orjales, and C. La Casa. (2003). A new flavonoid derivative, dosmalfate, attenuates the development of dextran sulphate sodium-induced colitis in mice. Int. Immunopharmacol. 3:1731–1741.
  • S. Wasser, J.M. Ho, H.K. Ang, and C.E. Tan. (1998). Saliva miltiorrhiza reduces experimentally-induced hepatic fibrosis in rats. J. Hepatol. 29:760–771.
  • C.E. Wright, D.D. Rees, and S. Moncada. (1992). Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc. Res. 26:48–57.
  • B. Xia, C.S. Deng, D.J. Chen, Y. Zhou, and J.Q. Xiao. (1996). Role of copper zinc superoxide dismutase in the short-term treatment of acetic acid-induced colitis in rats. Acta Gastroenterol. Latinoarn. 26:227–230.
  • A. Zargari. (1990). Medicinal Plants, Volume 4. Tehran University Publications, Tehran, Iran, pp. 103–104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.