294
Views
42
CrossRef citations to date
0
Altmetric
Research Article

The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells

, , , , , , & show all
Pages 191-200 | Received 03 Oct 2016, Accepted 03 Dec 2016, Published online: 08 Jan 2017

References

  • Back M, Hansson GK. (2015). Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12:199–211.
  • Cao Y, Jacobsen NR, Danielsen PH, et al. (2014a). Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci 138:104–16.
  • Cao Y, Roursgaard M, Danielsen PH, et al. (2014b). Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One 9:e106711.
  • Cao Y, Jantzen K, Gouveia AC, et al. (2015). Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro. Environ Toxicol Pharmacol 40:164–71.
  • Cao Y, Long J, Ji Y, et al. (2016a). Foam cell formation by particulate matter (PM) exposure: a review. Inhal Toxicol 28:583–90.
  • Cao Y, Roursgaard M, Jacobsen NR, et al. (2016b). Monocyte adhesion induced by multi-walled carbon nanotubes and palmitic acid in endothelial cells and alveolar-endothelial co-cultures. Nanotoxicology 10:235–44.
  • Chen R, Huo L, Shi X, et al. (2014). Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8:2562–74.
  • Danielsen PH, Cao Y, Roursgaard M, et al. (2015). Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials. Nanotoxicology 9:813–24.
  • Eelen G, de ZP, Simons M, Carmeliet P. (2015). Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116:1231–44.
  • Gong Y, Ji Y, Liu F, et al. (2016). Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol. [Epub ahead of print]. doi: 10.1002/jat.3415.
  • Ji Y, Zhu M, Gong Y, et al. (2016). Thermoresponsive polymers with lower critical solution temperature- or upper critical solution temperature-type phase behaviour do not induce toxicity to human endothelial cells. Basic Clin Pharmacol Toxicol. [Epub ahead of print]. doi: 10.1111/bcpt.12643.
  • Jiang Q, Li X, Cheng S, et al. (2016). Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages. Environ Toxicol Pharmacol 48:103–9.
  • Kermanizadeh A, Gosens I, MacCalman L, et al. (2016). A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health–ENPRA project–the highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev 19:1–28.
  • Kermanizadeh A, Pojana G, Gaiser BK, et al. (2013). In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology 7:301–13.
  • Lee GH, Kim DS, Kim HT, et al. (2011). Enhanced lysosomal activity is involved in Bax inhibitor-1-induced regulation of the endoplasmic reticulum (ER) stress response and cell death against ER stress: involvement of vacuolar H+-ATPase (V-ATPase). J Biol Chem 286:24743–53.
  • Liu S, Sarkar C, Dinizo M, et al. (2015). Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6:e1582.
  • Moller P, Christophersen DV, Jacobsen NR, et al. (2016). Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 46:437–76.
  • Moreau KL, Deane KD, Meditz AL, et al. (2013). Tumor necrosis factor-α inhibition improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Atherosclerosis 230:390–96.
  • Ozcan L, Tabas I. (2012). Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–28.
  • Sasaki K, Yoshida H. (2015). Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem 157:185–95.
  • Setyawati MI, Tay CY, Docter D, et al. (2015). Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chem Soc Rev 44:8174–99.
  • Tomaszewski KA, Radomski MW, Santos-Martinez MJ. (2015). Nanodiagnostics, nanopharmacology and nanotoxicology of platelet-vessel wall interactions. Nanomedicine (Lond) 10:1451–75.
  • Vance ME, Kuiken T, Vejerano EP, et al. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–80.
  • Ying R, Wang XQ, Yang Y, et al. (2016). Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci 144:208–17.
  • Zhang Y, Yang X, Bian F, et al. (2014). TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ. J Mol Cell Cardiol 72:85–94.
  • Zhou AX, Tabas I. (2013). The UPR in atherosclerosis. Semin Immunopathol 35:321–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.