357
Views
9
CrossRef citations to date
0
Altmetric
Articles

In vivo toxicity assays in zebrafish embryos: a pre-requisite for xenograft preclinical studies

ORCID Icon, , , , &
Pages 478-487 | Received 07 Nov 2018, Accepted 19 Apr 2019, Published online: 04 Jun 2019

Referencese

  • Almendro V, Marusyk A, Polyak K. 2013. Cellular heterogeneity and molecular evolution in cancer. Ann Rev Pathol. 8:277–302.
  • Ban J, Aryee DNT, Fourtouna A, van der Ent W, Kauer M, Niedan S, Machado I, Rodriguez-Galindo C, Tirado OM, Schwentner R, et al. 2014. Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma. Cancer Res. 74:6578–6588.
  • Chan KS, Koh CG, Li HY. 2012. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 3:e411.
  • Eimon PM, Rubinstein AL. 2009. The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin Drug Metab Toxicol. 4:393–401.
  • Eguiara A, Holgado O, Beloqui I, Abalde L, Sanchez Y, Callol C, Martin A. 2011. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle. 10:3751–3757.
  • Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, Ferreira MG. 2017. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA. 114:E8234–43.
  • Garcia GR, Noyes PD, Tanguay RL. 2016. Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther.
  • Ghotra V, He S, Bont H, Ent W, Spaink H, Water B, Snaar-Jagalska B, Danen E. 2012. Automated whole animal bio-imaging assay for human cancer dissemination. PloS One. 7:e31281.
  • He S, Lamers G, Beenakker J, Cui C, Ghotra V, Danen E, Meijer A, Spaink H, Snaar-Jagalska B. 2012. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol. 227:431–445.
  • Henn K, Braunbeck T. 2011. Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 1:91–98.
  • Ikonomopoulou MP, Fernandez-Rojo MA, Pineda SS, Cabezas-Sainz P, et al. 2018. Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Sci Rep. 1:811519.
  • Jo DH, Son D, Na Y, Jang M, Choi JH, Kim JH, Yu YS, Seok SH, Kim JH. 2013. Orthotopic Transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Mol Cancer. 12(71). DOI: 10.1186/1476-4598-12-71.
  • Jung D-W, Oh E-S, Park S-H, Chang Y-T, Kim C-H, Choi S-Y, Williams DR. 2012. A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Molecular BioSystems. 7:1930–1939.
  • Kai S, Kohmura H, Ishikawa K, Makihara Y, Ohta S, Kawano S, Takahashi N. 1989. Teratogenic effects of carboplatin, an oncostatic drug, administered during the early organogenetic period in rats. J Toxicol Sci. 14:115–130.
  • Kristofco LA, Haddad SP, Chambliss CK, Brooks BW1. 2018. Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Environ Toxicol Chem. 37(4):1175–1181.
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn. 203: 253–310.
  • Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. 2004. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 28:9–28.
  • Lee S-H, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, Lee CL, Liang A, Kim J, Feng L, et al. 2005. 16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res. 65:7984–7992.
  • MacRae CA, Peterson RT. 2015. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 14:721–731.
  • McCollum CW, Ducharme NA, Bondesson M, Gustafsson J-A. 2011. Developmental toxicity screening in zebrafish. Birth Defects Res C Embryo Today. 93:67–114.
  • Mimeault M, Batra SK. 2013. Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discov Today. 18:128–140.
  • Mueller M–T, Hermann PC, Witthauer J, Rubio–Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, et al. 2009. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 137:1102–1113.
  • Nicoli S, Presta M. 2007. The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc. 2:2918–2923.
  • Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. 2016. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom. 56:18–27.
  • OECD. 2013. Guideline for the testing of chemicals test no. 236: fish embryo acute toxicity (FET) test. Paris: Organization for Economic Co-Operation and Development.
  • Paatero I, Casals E, Niemi R, Özliseli E, Rosenholm JM, Sahlgren C. 2017. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci Rep. 7(1):8423.
  • Parashar V, Ghosh B, Gaur N, Shamal SN, Pandey SK, Shah GL. 2016. Teratological effects of carboplatin: a morphological study in mice. 4:2358–2364.
  • Pelka KE, Henn K, Keck A, Sapel B, Braunbeck T. 2007. Size does matter - Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos. Aquat Toxicol. 185:1–10.
  • Pitt JA1, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, Wiesner M, Levin ED, Di Giulio RT. 2018. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat Toxicol. 194:185–194.
  • Renier C, Juliette H F, Patrice B, Timothy M, Pascal B, Frédéric R, Emmanuel M. 2007. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenetics and Genomics.
  • Roel M, Rubiolo JA, Guerra-Varela J, Silva SB, Thomas OP, Cabezas-Sainz P, Sánchez L, López R, Botana LM. 2016. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget. 13; 7:83071–83087.
  • Rojas-Muñoz A, Miana A, Izpisúa-Belmonte JC. 2007. El pez cebra, versatilidad al servicio de la biomedicina. Investgación y Ciencia. 366:62–69.
  • Tonon F, Cristina Z, Dapas B, Carraro M, Mariotti M, Grassi G. 2016. Rapid and cost-effective xenograft hepatocellular carcinoma model in zebrafish for drug testing. Int J Pharm. 515:583–591.
  • ToxRat Solutions. ToxRat®. 2003. Software for the Statistical Analysis of Biotests. Alsdorf, Germany.
  • van der Ent W, Burrello C, Teunisse AFAS, Ksander BR, van der Velden PA, Jager MJ, Jochemsen AG, Snaar-Jagalska BE. 2014. Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci. 55:6612–6622.
  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. 2013. Cancer genome landscapes. Science. 339:1546–1558.
  • Wertman J, Veinotte CJ, Dellaire G, and Berman JN. 2016. The zebrafish xenograft platform: evolution of a novel cancer model and preclinical screening tool. Adv Exp Med Biol. 916:289–314.
  • Westerfield M. 2007. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th Edition. Eugene: University of Oregon Press.
  • Zhang B, Shimada Y, Kuroyanagi J, Nishimura Y, Umemoto N, Nomoto T, Shintou T, Miyazaki T, Tanaka T. 2014. Zebrafish xenotransplantation model for cancer stem-like cell study and high-throughput screening of inhibitors. Tumor Biol. 35:11861–11869.
  • Zhong L, Yang J, Cao Z, Chen X, Hu Y, Li L, Yang S. 2017. Preclinical pharmacodynamic evaluation of drug candidate SKLB-178 in the treatment of non-small cell lung cancer. Oncotarget. 8:12843–12854.
  • Zhong Y, Jia T, Sun Z, Lu Y, Gao J, Zou H, Xie F, Xu H, Sun D, Yu Y, et al. 2016. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1–42-injected mice. Int J Nanomedicine. 11:3765–3775.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.