98
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Identification of structural fingerprints for in vivo toxicity by using Monte Carlo based QSTR modeling of nitroaromatics

, , , & ORCID Icon
Pages 257-265 | Received 11 Sep 2019, Accepted 21 Dec 2019, Published online: 07 Jan 2020

References

  • Achary PGR, Toropova AP, Toropov AA. 2019. Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Res Int. 122:40–46.
  • Ahmadi S, Mehrabi M, Rezaei S, Mardafkan N. 2019. Structure-activity relationship of the radical scavenging activities of some natural antioxidants based on the graph of atomic orbitals. J Mol Struct. 1191:165–174.
  • Artemenko AG, Muratov EN, Kuz’Min VE, Muratov NN, Varlamova EV, Kuz’Mina AV, Gorb LG, Golius A, Hill FC, Leszczynski J, et al. 2011. QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: structural factors and possible modes of action. SAR QSAR Environ Res. 22:575–601.
  • Bhargava S, Adhikari N, Amin SA, Das K, Gayen S, Jha T. 2017. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization. SAR QSAR Environ Res. 28:973–990.
  • Bhargava S, Patel T, Gaikwad R, Patil UK, Gayen S. 2019. Identification of structural requirements and prediction of inhibitory activity of natural flavonoids against Zika virus through molecular docking and Monte Carlo based QSAR simulation. Nat Prod Res. 33:851–857.
  • Das RN, Roy K. 2013. Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers. 17:151–196.
  • Debnath AK, Hansch C. 1992. Structure‐activity relationship of genotoxic polycyclic aromatic nitro compounds: further evidence for the importance of hydrophobicity and molecular orbital energies in genetic toxicity. Environ Mol Mutagen. 20:140–144.
  • Donlon BA, Razo-Flores E, Field JA, Lettinga G. 1995. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge. Appl Environ Microbiol. 61:3889–3893.
  • El-Zahabi HS, Khalifa MM, Gado YM, Farrag AM, Elaasser MM, Safwat NA, AbdelRaouf RR, Arafa RK. 2019. New thiobarbituric acid scaffold-based small molecules: synthesis, cytotoxicity, 2D-QSAR, pharmacophore modelling and in-silico ADME screening. Eur J Pharm Sci. 130:124–136.
  • Fan M, Byrd C, Compadre CM, Compadre RL. 1998. Comparison of CoMFA models for Salmonella typhimurium TA98, TA100+ TA98+ S9 and TA100+ S9 mutagenicity of nitroaromatics. SAR QSAR Environ Res. 9:187–215.
  • Fioressi SE, Bacelo DE, Rojas C, Aranda JF, Duchowicz PR. 2019. Conformation-independent quantitative structure-property relationships study on water solubility of pesticides. Ecotox Environ Safe. 171:47–53.
  • Gaikwad R, Ghorai S, Amin SA, Adhikari N, Patel T, Das K, Jha T, Gayen S. 2018. Monte Carlo based modelling approach for designing and predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cell line MCF7. Toxicol In Vitro. 52:23–32.
  • Gooch A, Sizochenko N, Rasulev B, Gorb L, Leszczynski J. 2017. In vivo toxicity of nitroaromatics: a comprehensive quantitative structure-activity relationship study. Environ Toxicol Chem. 36:2227–2233.
  • Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. 2019. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2, 3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn. 28:1–4.
  • Katritzky AR, Oliferenko P, Oliferenko A, Lomaka A, Karelson M. 2003. Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations. J Phys Org Chem. 16:811–817.
  • Keshavarz MH, Akbarzadeh AR. 2019. A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes. SAR QSAR Environ Res. 30:347–361.
  • Klein M, Erdinger L, Boche G. 2000. From mutagenic to non-mutagenic nitroarenes: effect of bulky alkyl substituents on the mutagenic activity of nitroaromatics in Salmonella typhimurium: Part II. Substituents far away from the nitro group. Mutat Res Gen Gox. 467:69–82.
  • Kulkarni M, Chaudhari A. 2007. Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manag. 85:496–512.
  • Kumar A, Chauhan S. 2017. Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors. SAR QSAR Environ Res. 28:179–197.
  • Kuz’min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J. 2008a. The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study. J Comput Aided Mol Des. 22:747.
  • Kuz’Min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J. 2008b. The effect of nitroaromatics’ composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis. Chemosphere. 72:1373–1380.
  • Lang PZ, Lu GH. 1995. QSAR study for the toxicity of nitroaromatics to the fathead minnow. Chem J Chin. 16:1087.
  • Leone C, Bertuzzi EE, Toropova AP, Toropov AA, Benfenati E. 2018. CORAL: predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. Chemosphere. 210:52–56.
  • Manisha S, Chauhan P, Kumar A. 2019. Development of prediction model for fructose-1, 6-bisphosphatase inhibitors using the Monte Carlo method. SAR QSAR Environ Res. 30:145–159.
  • Mekenyan O, Roberts D.W, Karcher W. 1997. Molecular orbital parameters as predictors of skin sensitization potential of halo-and pseudohalobenzenes acting as SNAr electrophiles. Chem Res Toxicol. 10:994–1000.
  • Pouretedal H.R, Keshavarz M.H. 2011. Prediction of toxicity of nitroaromatic compounds through their molecular structures. JICS. 8:78–89.
  • Rescifina A, Floresta G, Marrazzo A, Parenti C, Prezzavento O, Nastasi G, Dichiara M, Amata E. 2017. Development of a Sigma-2 receptor affinity filter through a Monte Carlo based QSAR analysis. Eur J Pharm Sci. 106:94–101.
  • Roy K, Ambure P, Kar S, Ojha PK. 2018. Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemometr. 32:2992.
  • Roy K, Kar S, Ambure P. 2015. On a simple approach for determining applicability domain of QSAR models Intelligent Laboratory Systems. Chemom Intell Lab Syst. 145:22–29.
  • Schmitt H, Altenburger R, Jastorff B, Schüürmann G. 2000. Quantitative structure − activity analysis of the algae toxicity of nitroaromatic compounds. Chem Res Toxicol. 13:441–450.
  • Singh N, Chaudhury S, Liu R, AbdulHameed MD, Tawa G, Wallqvist A. 2012. QSAR classification model for antibacterial compounds and its use in virtual screening. J Chem Inf Model. 52:2559–2569.
  • Toropov AA, Toropova AP, Martyanov SE, Benfenati E, Gini G, Leszczynska D, Leszczynski J. 2011. Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chemom Intell Lab Syst. 109:94–100.
  • Toropova AP, Toropov AA. 2017. Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicol Lett. 275:57–66.
  • Veselinovic JB, Dordevic V, Bogdanovic M, Moric I, Veselinovic AM. 2018. QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bacteria. Struct Chem. 29:541–551.
  • Wang X, Lin Z, Yin D, Liu S, Wang L. 2005. 2D/3D-QSAR comparative study on the mutagenicity of nitroaromatics. Sci China Ser B. 48:246–252.
  • Wang X, Yin C, Wang L. 2002. Structure–activity relationships and response–surface analysis of nitroaromatics toxicity to the yeast (Saccharomyces cerevisiae). Chemosphere. 46:1045–1051.
  • Yan XF, Xiao HM, Gong XD, Ju XH. 2005. Quantitative structure–activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus). Chemosphere. 59:467–471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.