146
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Application of three-dimensional Raman imaging to determination of the relationship between cellular localization of diesel exhaust particles and the toxicity

, , , , , , , & show all
Pages 333-340 | Received 24 Aug 2021, Accepted 15 Nov 2021, Published online: 07 Dec 2021

References

  • Ackland ML, Zou L, Freestone D, Van De Waasenburg S, Michalczyk AA. 2007. Diesel exhaust particulate matter induces multinucleate cells and zinc transporter-dependent apoptosis in human airway cells. Immunol Cell Biol. 85(8):617–622.
  • Amornwachirabodee K, Tantimekin N, Pan-In P, Palaga T, Pienpinijtham P, Pipattanaboon C, Sukmanee T, Ritprajak P, Charoenpat P, Pitaksajjakul P, et al. 2018. Oxidized carbon black: preparation, characterization and application in antibody delivery across cell membrane. Sci Rep. 8(1):2849.
  • An J, Zhou Q, Wu M, Wang L, Zhong Y, Feng J, Shang Y, Chen Y. 2019. Interactions between oxidative stress, autophagy and apoptosis in A549 cells treated with aged black carbon. Toxicol in Vitro. 54:67–74.
  • Ashton L, Hollywood KA, Goodacre R. 2015. Making colourful sense of Raman images of single cells. Analyst. 140(6):1852–1858.
  • Aslantürk ÖS. 2018. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages Vol. 2, p. 64. InTech.
  • Balan DJ, Rajavel T, Das M, Sathya S, Jeyakumar M, Devi KP. 2021. Thymol induces mitochondrial pathway-mediated apoptosis via ROS generation, macromolecular damage and SOD diminution in A549 cells. Pharmacol Rep. 73(1):240–254.
  • Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, Baeza-Squiban A. 2003. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 285(3):L671–L679.
  • Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2(4):MR17–MR71.
  • Cader C, Bertheau P, Blechinger P, Huyskens H, Breyer C. 2016. Global cost advantages of autonomous solar-battery-diesel systems compared to diesel-only systems. Energy Sustain Dev. 31(1200):14–23.
  • Corsini E, Budello S, Marabini L, Galbiati V, Piazzalunga A, Barbieri P, Cozzutto S, Marinovich M, Pitea D, Galli CL. 2013. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch Toxicol. 87(12):2187–2199.
  • Chung SW, Chung HY, Toriba A, Kameda T, Tang N, Kizu R, Hayakawa K. 2007. An environmental quinoid polycyclic aromatic hydrocarbon, acenaphthenequinone, modulates cyclooxygenase-2 expression through reactive oxygen species generation and nuclear factor kappa B activation in A549 cells. Toxicol Sci. 95(2):348–355.
  • Choe C, Schleusener J, Lademann J, Darvin ME. 2017. Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy. Sci Rep. 7(1):15900.
  • Dou C, Zhang J, Qi C. 2018. Cooking oil fume-derived PM2.5 induces apoptosis in A549 cells and MAPK/NF-кB/STAT1 pathway activation. Environ Sci Pollut Res Int. 25(10):9940–9948.
  • Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. 2013. Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol. 35(1):67–71.
  • Finlayson-Pitts BJ, Pitts JN. Jr. 1999. Chemistry of the upper and lower atmosphere: theory, experiments, and applications.
  • Fujitani Y, Hirano S, Kobayashi S, Tanabe K, Suzuki A, Furuyama A, Kobayashi T. 2009. Characterization of dilution conditions for diesel nanoparticle inhalation studies. Inhal Toxicol. 21(3):200–209.
  • Gao J, Ma C, Xia F, Xing S, Sun L, Huang L. 2016. Raman characteristics of PM emitted by a diesel engine equipped with a NTP reactor. Fuel. 185:289–297.
  • Habre R, Zhou H, Eckel SP, Enebish T, Fruin S, Bastain T, Rappaport E, Gilliland F. 2018. Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environ Int. 118:48–59.
  • Honda A, Ito S, Tanaka M, Sawahara T, Hayashi T, Fukushima W, Kitamura G, Kudo H, Chowdhury PH, Okano H, et al. 2019. Extract of curry powder and its components protect against diesel exhaust particle-induced inflammatory responses in human airway epithelial cells. Food Agr Immunol. 30(1):1212–1224.
  • Jantzen K, Roursgaard M, Desler C, Loft S, Rasmussen LJ, Møller P. 2012. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages. Mutagenesis. 27(6):693–701.
  • Kabachinski G, Schwartz TU. 2015. The nuclear pore complex–structure and function at a glance. J Cell Sci. 128(3):423–429.
  • Knockenhauer KE, Schwartz TU. 2016. The nuclear pore complex as a flexible and dynamic gate. Cell. 164(6):1162–1171.
  • Kuku G, Culha M. 2017. Investigating the origins of toxic response in TiO2 nanoparticle-treated cells. Nanomaterials. 7(4):83.
  • Kumar S, Joos G, Boon L, Tournoy K, Provoost S, Maes T. 2017. Role of tumor necrosis factor-α and its receptors in diesel exhaust particle-induced pulmonary inflammation. Sci Rep. 7(1):11508.
  • Lankoff A, Brzoska K, Czarnocka J, Kowalska M, Lisowska H, Mruk R, Øvrevik J, Wegierek-Ciuk A, Zuberek M, Kruszewski M. 2017. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. Environ Sci Pollut Res Int. 24(23):19357–19374.
  • Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM. 2017. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, I Na and I K1 channels and heart rhythm in mice. Nanotoxicology. 11(6):827–837.
  • Majzner K, Kaczor A, Kachamakova-Trojanowska N, Fedorowicz A, Chlopicki S, Baranska M. 2013. 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst. 138(2):603–610.
  • Manousakas M, Papaefthymiou H, Diapouli E, Migliori A, Karydas AG, Bogdanovic-Radovic I, Eleftheriadis K. 2017. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci Total Environ. 574:155–164.
  • Mazzarella G, Ferraraccio F, Prati MV, Annunziata S, Bianco A, Mezzogiorno A, Liguori G, Angelillo IF, Cazzola M. 2007. Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study. Respir Med. 101(6):1155–1162.
  • Mazzarella G, Lucariello A, Bianco A, Calabrese C, Thanassoulas T, Savarese L, Fiumarella A, Esposito V, Luca DEA. 2014. Exposure to submicron particles (PM1. 0) from diesel exhaust and pollen allergens of human lung epithelial cells induces morphological changes of mitochondria tonifilaments and rough endoplasmic reticulum. In Vivo. 28(4):557–561.
  • Nakamura R, Inoue K, Fujitani Y, Kiyono M, Hirano S, Takano H. 2012. Effects of nanoparticle-rich diesel exhaust particles on IL-17 production in vitro. J Immunotoxicol. 9(1):72–76.
  • Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, Subramaniyan D, Dhanasekaran S, Yasin J, Ali BH, Kazzam EE. 2011. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol. 164(7):1871–1882.
  • Panté N, Kann M. 2002. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell. 13(2):425–434.
  • Pätzold R, Keuntje M, Ahlften AA. 2006. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal Bioanal Chem. 386(2):286–292.
  • Pigorsch E. 2021. New insights into paper—Chemical paper analysis using Raman microscopy. J Raman Spectrosc. 52(1):78–84.
  • Porter AE, Muller K, Skepper J, Midgley P, Welland M. 2006. Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2(4):409–419.
  • Rajavel T, Packiyaraj P, Suryanarayanan V, Singh SK, Ruckmani K, Devi KP. 2018. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci Rep. 8(1):2071.
  • Schraufnagel DE. 2020. The health effects of ultrafine particles. Exp Mol Med. 52(3):311–317.
  • Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S. 2020. Half the world’s population are exposed to increasing air pollution. Npj Clim Atmos Sci. 3(1):23.
  • Sharma V, Anderson D, Dhawan A. 2012. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 17(8):852–870.
  • Smith R, Wright KL, Ashton L. 2016. Raman spectroscopy: an evolving technique for live cell studies. Analyst. 141(12):3590–3600.
  • Song JJ, Lee JD, Lee BD, Chae SW, Park MK. 2012. Effect of diesel exhaust particles on human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol. 76(3):334–338.
  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. 2018. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 13(1):44.
  • Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, Sagai M. 1997. Diesel exhaust particles enhance antigen-induced airway inflammation and local cytokine expression in mice. Am J Respir Crit Care Med. 156(1):36–42.
  • Takano H, Yanagisawa R, Ichinose T, Sadakane K, Yoshino S, Yoshikawa T, Morita M. 2002. Diesel exhaust particles enhance lung injury related to bacterial endotoxin through expression of proinflammatory cytokines, chemokines, and intercellular adhesion molecule-1. Am J Respir Crit Care Med. 165(9):1329–1335.
  • Tau J, Novaes P, Matsuda M, Tasat DR, Saldiva PH, Berra A. 2013. Diesel exhaust particles selectively induce both proinflammatory cytokines and mucin production in cornea and conjunctiva human cell lines. Invest Ophthalmol Vis Sci. 54(7):4759–4766.
  • Totlandsdal AI, Cassee FR, Schwarze P, Refsnes M, Låg M. 2010. Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. Part Fibre Toxicol. 7:41.
  • Vitar RML, Tau J, Janezic NS, Tesone AI, Arana AGH, Reides CG, Berra A, Ferreira SM, Llesuy SF. 2018. Diesel exhaust particles (DEP) induce an early redox imbalance followed by an IL-6 mediated inflammatory response on human conjunctival epithelial cells. Exp Eye Res. 171:37–47.
  • Wang Z, Zhao X, Gong X. 2016. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress. Cell Biol Int. 40(3):289–297.
  • Wichmann HE. 2007. Diesel exhaust particles. Inhal Toxicol. 19(sup1):241–244.
  • Widjaja E, Kanaujia P, Lau G, Ng WK, Garland M, Saal C, Hanefeld A, Fischbach M, Maio M, Tan RBH. 2011. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur J Pharm Sci. 42(1–2):45–54.
  • Yang W, Wang L, Mettenbrink EM, DeAngelis PL, Wilhelm S. 2021. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol. 61:269–289.
  • Yoshida T, Yoshioka Y, Matsuyama K, Nakazato Y, Tochigi S, Hirai T, Kondoh S, Nagano K, Abe Y, Kamada H, et al. 2012. Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells. Biochem Biophys Res Commun. 427(4):748–752.
  • Zhang K, Nie D, Chen M, Wu Y, Ge X, Hu J, Ge P, Li W, Huang B, Yuan Y, et al. 2019. Chemical characterization of two seasonal PM2. 5 samples in Nanjing and its toxicological properties in three human cell lines. Environments. 6(4):42.
  • Zheng X, Wang G, Bin P, Meng T, Niu Y, Yang M, Zhang L, Duan H, Yu T, Dai Y, et al. 2019. Time-course effects of antioxidants and phase II enzymes on diesel exhaust particles-induced oxidative damage in the mouse lung. Toxicol Appl Pharmacol. 366:25–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.