221
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Deferoxamine ameliorated Al(mal)3-induced neuronal ferroptosis in adult rats by chelating brain iron to attenuate oxidative damage

, , , , , , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 530-541 | Received 25 Oct 2021, Accepted 08 Mar 2022, Published online: 22 Mar 2022

References

  • Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al. 2021. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 28(5):1548–1562.
  • Bertrand RL. 2017. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events. Med Hypotheses. 101:69–74.
  • Bevins RA, Besheer J. 2006. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc. 1(3):1306–1311.
  • Bondy SC. 2014. Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology. 315:1–7.
  • Cao Z, Wang P, Gao X, Shao B, Zhao S, Li Y. 2019. Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. J Inorg Biochem. 193:143–151.
  • Cheng L, Liang R, Li Z, Ren J, Yang S, Bai J, Niu Q, Yu H, Zhang H, Xia N, et al. 2021. Aluminum maltolate triggers ferroptosis in neurons: mechanism of action. Toxicol Mech Methods. 31(1):33–42.
  • Cho H, Cahill C, Vanderburg C, Scherzer C, Wang B, Huang X, Rogers J. 2010. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J Biol Chem. 285(41):31217–31232.
  • Cirovic A, Cirovic A. 2022. Aluminum bone toxicity in infants may be promoted by iron deficiency. J Trace Elem Med Biol. 71:126941.
  • Crapper D, Krishnan S, Dalton A. 1973. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science. 180(4085):511–513.
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5):1060–1072.
  • Dixon SJ, Stockwell BR. 2014. The role of iron and reactive oxygen species in cell death. J. Nat Chem Biol. 10(1):9–17.
  • Gan X, Wu L, Huang S, Zhong C, Shi H, Li G, Yu H, Howard Swerdlow R, Xi Chen J, Yan S. 2014. Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radic Biol Med. 75:230–240.
  • GBD 2019 Stroke Collaborators. 2021. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20(10):795–820.
  • Guo C, Wang P, Zhong M, Wang T, Huang X, Li J, Wang Z. 2013. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int. 62(2):165–172.
  • He C, Ji J, Zhao X, Lei Y, Li H, Hao Y, Zhang S, Zhang J, Liu C, Nie J, et al. 2021. The role of PKC in regulating NMDARs in aluminum-induced learning and memory impairment in rats. Neurotox Res. 39(6):2042–2055.
  • Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. 2019. Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol. 431(9):1843–1868.
  • Kaneko N, Sugioka T, Sakurai H. 2007. Aluminum compounds enhance lipid peroxidation in liposomes: insight into cellular damage caused by oxidative stress. J Inorgan Biochem. 101(6):967–975.
  • Kosyakovsky J, Fine J, Frey W, Hanson L. 2021. Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease. Pharmaceuticals. 14(2):95.
  • Kowalczuk K, Stryjecka-Zimmer M. 2002. The influence of oxidative stress on the level of malondialdehyde (MDA) in different areas of the rabbit brain. Ann Univ Mariae Curie Sklodowska Med. 57(2):160.
  • Kwon M, Park E, Lee S, Chung S. 2015. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 6(27):24393–24403.
  • Lane C, Hardy J, Schott J. 2018. Alzheimer’s disease. Eur J Neurol. 25(1):59–70.
  • Lane DJR, Ayton S, Bush AI. 2018. Iron and Alzheimer’s disease: an update on emerging mechanisms. J Alzheimers Dis. 64(s1):S379–S395.
  • Li L, Chai R, Zhang S, Xu S, Zhang Y, Li H, Fan Y, Guo C. 2019. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice. Cells. 8(2):198.
  • Li Y, Jiao Q, Xu H, Du X, Shi L, Jia F, Jiang H. 2017. Biometal dyshomeostasis and toxic metal accumulations in the development of Alzheimer’s disease. Front Mol Neurosci. 10:339.
  • Lyon L, Saksida L, Bussey T. 2012. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl). 220(4):647–672.
  • Mcdonald J, Dhakal S, Macreadie I. 2021. A toxic synergy between aluminium and amyloid beta in yeast. IJMS. 22(4):1835.
  • McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V, et al. 2019. Aluminum in neurological and neurodegenerative disease. Mol Neurobiol. 56(2):1531–1538.
  • Morris G, Puri B, Frye R. 2017. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis. 32(5):1335–1355.
  • Nie J, Lv S, Fu X, Niu Q. 2019. Effects of Al exposure on mitochondrial dynamics in rat hippocampus. J Neurotox Res. 36(2):334–346.
  • Nunez J. 2008. Morris water maze experiment. Vis Exp. (19):897.
  • World Health Organization. 2018. Towards a dementia plan: a WHO guide. Geneva (Switzerland): World Health Organization.
  • Oshiro S, Kawahara M, Mika S, Muramoto K, Kobayashi K, Ishige R, Nozawa K, Hori M, Yung C, Kitajima S, et al. 1998. Aluminum taken up by transferrin-independent iron uptake affects the iron metabolism in rat cortical cells. J Biochem. 123(1):42–46.
  • Papazisis G, Pourzitaki C, Sardeli C, Lallas A, Amaniti E, Kouvelas D. 2008. Deferoxamine decreases the excitatory amino acid levels and improves the histological outcome in the hippocampus of neonatal rats after hypoxia-ischemia. Pharmacol Res. 57(1):73–78.
  • Ward RJ, Zhang Y, Crichton RR. 2001. Aluminium toxicity and iron homeostasis. J Inorg Biochem. 87(1-2):9–14.
  • Rothstein J, Bristol L, Hosler B, Brown R, Kuncl R. 1994. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci U S A. 91(10):4155–4159.
  • Saberzadeh J, Arabsolghar R, Takhshid M. 2016. Alpha synuclein protein is involved in Aluminum-induced cell death and oxidative stress in PC12 cells. Brain Res. 1635:153–160.
  • Sharma D, Wani W, Sunkaria A, Kandimalla R, Sharma R, Verma D, Bal A, Gill K. 2016. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience. 324:163–176.
  • Stanford S. 2007. The Open Field Test: reinventing the wheel. J Psychopharmacol. 21(2):134–135.
  • Sutherland GT, Chami B, Youssef P, Witting PK. 2013. Oxidative stress in Alzheimer’s disease: Primary villain or physiological by-product? Redox Rep. 18(4):134–141.
  • Tomás Pereira I, Burwell R. 2015. Using the spatial learning index to evaluate performance on the water maze. Behav Neurosci. 129(4):533–539.
  • Vorhees C, Williams M. 2006. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 1(2):848–858.
  • Wang H, Shao B, Yu H, Xu F, Wang P, Yu K, Han Y, Song M, Li Y, Cao Z. 2019. Neuroprotective role of hyperforin on aluminum maltolate-induced oxidative damage and apoptosis in PC12 cells and SH-SY5Y cells. Chem Biol Interact. 299:15–26.
  • Willhite C, Ball G, McLellan C. 2012. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit Rev Toxicol. 42(5):358–442.
  • Wu Z, Du Y, Xue H, Wu Y, Zhou B. 2012. Aluminum induces neurodegeneration and its toxicity arises from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging. 33(1):199.e1–199.12.
  • Yamanaka K, Minato N, Iwai K. 1999. Stabilization of iron regulatory protein 2, IRP2, by aluminum. FEBS Lett. 462(1–2):216–220.
  • Yan H, Zou T, Tuo Q, Xu S, Li H, Belaidi A, Lei P. 2021. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 6(1):49.
  • Yokel R. 2006. Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis. 10(2-3):223–253.
  • Yuan C, Lee Y, Hsu G. 2012. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci. 19(1):51.
  • Zhu W, Zhong W, Wang W, Zhan C, Wang C, Qi J, Wang J, Lei T. 2009. Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology. 253(2):497–504.
  • Zhu Y, Hu C, Zheng P, Miao L, Yan X, Li H, Wang Z, Gao B, Li Y. 2016. Ginsenoside Rb1 alleviates aluminum chloride-induced rat osteoblasts dysfunction. Toxicology. 368-369:183–188.
  • Zhuang C, She Y, Zhang H, Song M, Han Y, Li Y, Zhu Y. 2018. Cytoprotective effect of deferiprone against aluminum chloride-induced oxidative stress and apoptosis in lymphocytes. Toxicol Lett. 285:132–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.